Journal of Engineering Physics and Thermophysics

, Volume 85, Issue 5, pp 1092–1096 | Cite as

Size effects during phase transformations in nanoobjects

  • V. Levdanskii
  • J. Smolik
  • V. Zdimal

The joint influence of size effects connected with physicochemical processes both on the surface of nanoobjects and in their volume on the phase transformations taking place in them has been investigated theoretically. The joint manifestation of the surface and volume size effects has been analyzed using as an example the growth of silicon nanowhiskers.


size effects nanoobjects phase transitions nanowhiskers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Dhalluin, P. J. Destre, M. I. den Hertog, J.-L. Rouviere, P. Ferret, P. Gentile, and T. Baron, Critical condition for growth of silicon nanowires, J. Appl. Phys., 102, 094906-1–094906-5 (2007).CrossRefGoogle Scholar
  2. 2.
    A. G. Nastov’yak, I. G. Neizvestnyi, N. L. Shvarts, and Z. Sh. Yanovitskaya, Simulation of the growth of nanowhiskers by the Monte Carlo method, Fiz. Tekh. Poluprovodn., 44, No. 1, 130–135 (2010).Google Scholar
  3. 3.
    V. G. Dubrovskii, N. V. Sibirev, and G. É. Tsyrlin, A kinetic model of the growth of nanometer filamentary crystals by the vapor–liquid–crystal mechanism, Pis’ma Zh. Tekh. Fiz., 30, Issue 16, 41–50 (2004).Google Scholar
  4. 4.
    M. Okuyama and J. T. Zung, Evaporation-condensation coefficient for small droplets, J. Chem. Phys. 46, 1580–1585 (1967).CrossRefGoogle Scholar
  5. 5.
    V. V. Levdanskii, Dependence of the condensation (sticking) coefficient on the radius of small aerosol particles, Inzh.-Fiz. Zh., 75, No. 4, 18–22 (2002).Google Scholar
  6. 6.
    S. Sh. Rekhviashvili and E. V. Kishtikova, Concerning the melting temperature of nanoparticles and nanostructured substances, Pis’ma Zh. Tekh. Fiz., 32, Issue 10, 50–55 (2006).Google Scholar
  7. 7.
    V. V. Levdanskii, I. Smolik, and V. Zdimal, Influence of size effects on the nucleation processes in a condensed phase, Inzh.-Fiz. Zh., 84, No. 3, 531–534 (2011).Google Scholar
  8. 8.
    D. Kashchiev and G. M. van Rosmalen, Review: Nucleation in solutions revisited, Cryst. Res. Technol., 38, Nos. 7–8, 555–574 (2003).CrossRefGoogle Scholar
  9. 9.
    W. H. Qi and M. P. Wang, Size and shape dependent melting temperature of metallic nanoparticles, Mater. Chem. Phys., 82, 280–284 (2004).CrossRefGoogle Scholar
  10. 10.
    S. C. Vanithakumari and K. K. Nanda, A universal relation for the cohesive energy of nanoparticles, Phys. Lett. A, 372, 6930–6934 (2008).MATHCrossRefGoogle Scholar
  11. 11.
    W. H. Qi, M. P. Wang, M. Zhou, X. Q. Shen, and X. F. Zhang, Modeling cohesive energy and melting temperature of nanocrystals, J. Phys. Chem. Solids, 857–855 (2006).Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.A. V. Luikov Heat and Mass Transfer InstituteNational Academy of Sciences of BelarusMinskBelarus
  2. 2.Institute of Chemical Process Fundamentals AS CRPragueCzech Republic

Personalised recommendations