Advertisement

Transient magneto-thermo-viscoelastic stresses in a rotating nonhomogeneous anisotropic solid with and without a moving heat source

  • M. A. Fahmy
Article

Transient magneto-thermo-viscoelastic stresses in a nonhomogeneous anisotropic solid with and without a moving heat source under rotation are studied. The system of fundamental equations is solved by means of the dual reciprocity boundary element method (DRBEM). In the case of plane deformation, a numerical scheme for the implementation of the method is presented, and the numerical computations are carried out for the temperature, displacement components, and thermal stress components. The validity of the DRBEM is examined by considering a magneto-thermo-viscoelastic solid that occupies a rectangular region, and good agreement with the existent results is obtained. The results indicate that the effects of a moving heat source and rotation are very pronounced.

Keywords

magneto-thermo-viscoelastic stress rotation inhomogeneity anisotropy dual reciprocity boundary element method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. M. Abd-Alla, A. M. El-Naggar, and M. A. Fahmy, Magneto-thermoelastic problem in non-homogeneous isotropic cylinder, Heat Mass Transfer, 39, 625–629 (2003).CrossRefGoogle Scholar
  2. 2.
    A. M. El-Naggar, A. M. Abd-Alla, and M. A. Fahmy, The propagation of thermal stresses in an infinite elastic slab, Appl. Math. Comput., 157, 307–312 (2004).MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    A. M. El-Naggar, A. M. Abd-Alla, M. A. Fahmy, and S. M. Ahmed, Thermal stresses in a rotating non-homogeneous orthotropic hollow cylinder, Heat Mass Transfer, 39, 41–46 (2002).CrossRefGoogle Scholar
  4. 4.
    M. I. A. Othman, Y. A. Sarhan, and R. M. Farouk, Generalized magneto-thermoviscoelastic plane waves under the effect of rotation without energy dissipation, Int. J. Eng. Sci., 46, 639–653 (2008).MATHCrossRefGoogle Scholar
  5. 5.
    F. Panteleenko and A. Heidari Monfared, Temperature and stress in a CT3 steel plate during air-arc cutting and welding processes, J. Eng. Phys. Thermophys., 83, No. 3, 632–637 (2010).CrossRefGoogle Scholar
  6. 6.
    S. Kaushal, Rajneesh Kumar, and A. Miglani, Response of frequency domain in generalized thermoelasticity with two temperatures, J. Eng. Phys. Thermophys., 83, No. 5, 1080–1088 (2010).CrossRefGoogle Scholar
  7. 7.
    Rajneesh Kumar and Rajeev Kumar, Analysis of wave motion at the boundary surface of orthotropic thermoelastic material with voids and isotropic elastic half-space, J. Eng. Phys. Thermophys., 84, No. 2, 463–478 (2011).CrossRefGoogle Scholar
  8. 8.
    W. J. Mansur and C. A. Brebbia, Transient elastodynamics using a time-stepping technique, in: C. A. Brebbia, T. Futagami, and M. Tanaka (Eds.), Boundary Elements, Springer-Verlag, Berlin (1983), pp. 677–698.Google Scholar
  9. 9.
    H. Antes, A boundary element procedure for transient wave propagations in two-dimensional isotropic elastic media, Finite Elem. Anal. Des., 1, 313–322 (1985).MATHCrossRefGoogle Scholar
  10. 10.
    C. A. Brebbia and D. Nardini, Dynamic analysis in solid mechanics by an alternative boundary element procedure, Int. J. Soil Dynam. Earthquake Eng., 2, 228–233 (1983).CrossRefGoogle Scholar
  11. 11.
    J. Domínguez, Boundary Elements in Dynamics, Computational Mechanics Publication, Southampton (1993).MATHGoogle Scholar
  12. 12.
    E. A. Divo and A. J. Kassab, Boundary Element Methods for Heat Conduction with Applications in Nonhomogeneous Media, WIT Press, Southampton (2003).Google Scholar
  13. 13.
    L. Gaul, M. Kögl, and M. Wagner, Boundary Element Methods for Engineers and Scientists, Springer-Verlag, Berlin (2003).MATHGoogle Scholar
  14. 14.
    A. M. Abd-Alla, T. M. El-Shahat, and M. A. Fahmy, Thermoelastic stresses in inhomogeneous anisotropic solid in the presence of body force, Int. J. Heat Technol., 25, No. 1, 111–118 (2007).Google Scholar
  15. 15.
    A. M. Abd-Alla, M. A. Fahmy, and T. M. El-Shahat, Magneto-thermoelastic stresses in inhomogeneous anisotropic solid in the presence of body force, Far East J. Appl. Math., 27, No. 3, 499–516 (2007).MathSciNetMATHGoogle Scholar
  16. 16.
    A. M. Abd-Alla, M. A. Fahmy, and T. M. El-Shahat, Magneto-thermoelastic problem of a rotating non-homogeneous anisotropic solid cylinder, Arch. Appl. Mech., 78, No. 2, 135–148 (2008).MATHCrossRefGoogle Scholar
  17. 17.
    M. A. Fahmy, Effect of initial stress and inhomogeneity on magneto-thermoelastic stresses in a rotating anisotropic solid, JP J. Heat Mass Transfer, 1, 93–112 (2007).MATHGoogle Scholar
  18. 18.
    M. A. Fahmy, Thermoelastic stresses in a rotating non-homogeneous anisotropic body, Numer. Heat Transfer, Part A, 53, 1001–1011 (2008).CrossRefGoogle Scholar
  19. 19.
    M. Fahmy, Application of DRBEM to non-steady state heat conduction in non-homogeneous anisotropic media under various boundary elements, Far East J. Math. Sci., 43, 83–93 (2010).MathSciNetMATHGoogle Scholar
  20. 20.
    M. A. Fahmy and T. M. El-Shahat, The effect of initial stress and inhomogeneity on the thermoelastic stresses in a rotating anisotropic solid, Arch. Appl. Mech., 78, No. 6, 431–442 (2008).MATHCrossRefGoogle Scholar
  21. 21.
    S. K. Roychoudhuri and S. Banerjee, Magneto-thermoelastic interactions in an infinite viscoelastic cylinder of temperature-rate dependent material subjected to a periodic loading, Int. J. Eng. Sci., 36, 635–643 (1998).CrossRefGoogle Scholar
  22. 22.
    C. A. Brebbia, J. C. F. Telles, and L. C. Wrobel, Boundary Element Techniques in Engineering, Springer-Verlag, New York (1984).MATHCrossRefGoogle Scholar
  23. 23.
    M. Guiggiani and A. Gigante, A general algorithm for multidimensional Cauchy principal value integrals in the boundary element method, ASME J. Appl. Mech., 57, 906–915 (1990).MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    V. Mantič, A new formula for the C-matrix in the Somigliana identity, J. Elast., 33, 191–201 (1993).MATHCrossRefGoogle Scholar
  25. 25.
    G. H. Golub and C. F. Van Loan, Matrix Computations, North Oxford Academic, Oxford (1983).MATHGoogle Scholar
  26. 26.
    K. J. Bathe, Finite Element Procedures, Englewood Cliffs, Prentice-Hall (1996).Google Scholar
  27. 27.
    J. Sladek, V. Sladek, P. Solek, and Ch. Zhang, Fracture analysis in continuously nonhomogeneous magnetoelectro-elastic solids under a thermal load by the MLPG, Int. J. Solids Struct., 47, No. 10, 1381–1391 (2010).MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  1. 1.Applied Mathematics Department, Faculty of Computers & InformaticsSuez Canal UniversityIsmailiaEgypt

Personalised recommendations