Rheology dynamics of the blood and plasma of rats after transdermal laser irradiation of the tail vein in the infrared range

  • I. V. Yamaikina
  • V. A. Mansurov
  • N. B. Gorbunova
  • L. E. Batai
  • V. S. Ulashchik
  • V. A. Orlovich

Single transdermal laser irradiation of the tail vein of males of white mongrel rats with an average mass of 350–400 g in three different regimes has been carried out. The irradiation doses were chosen to be intermediate between therapeutic and surgical ones, and the radiation wavelengths were 806 nm and 2 μm. The dynamics of the packed cell volume, deformability and cytometric indices of erythrocytes, and of the plasma and blood viscosity have been investigated. The rheological and cytometric changes in the blood caused by the irradiation stayed for several days. The observed rheologial changes are due to the removal of irradiation-damaged erythrocytes and the arrival in the blood channel of young and highly deformable red cells.


viscosity blood plasma deformability of erythrocytes infrared spectral range laser irradiation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. F. Palmer and D. Williams, Optical properties of water in the near infrared, J. Opt. Soc. Am., 64, 1107–1110 (1974).CrossRefGoogle Scholar
  2. 2.
    G. M. Hale and M. R. Querry, Optical constants of water in the 200-nm to 2000 nm wavelength region, Appl. Opt., 12, 555–563 (1973).CrossRefGoogle Scholar
  3. 3.
    N. F. Farashchuk, State of Hydration Processes in Liquid Media of the Organism under the Action of External Factors and Some Deseases, Author’s Abstract of Doctoral Disertation (in Medicine), Moscow (1994).Google Scholar
  4. 4.
    S. Benedicenti, I. M. Pepe, F. Angiero, and A. Benedicenti, Intracellular ATP level increases in lymphocytes irradiated with infrared laser light of wavelength 904 nm, Photomed. Laser Surg., 26, No. 5, 451–453 (2008).CrossRefGoogle Scholar
  5. 5.
    A. I. Kolesnikova, T. Kubasova, A. G. Konoplyannikov, and G. J. Köteles, Cellular alterations upon IR-laser (890 nm) exposures, in vivo, Pathol. Oncol. Res., 4, No. 1, 22–26 (1998).CrossRefGoogle Scholar
  6. 6.
    J. Kujawa, L. Zavodnik, I. Zavodnik, V. Buko, A. Lapshyna, and M. Bryszewska, Effect of low-intensity (3.75–25 J/cm2) near-infrared (810 nm) laser radiation on red blood cell ATPase activities and membrane structure, J. Clin. Laser Med. Surg., 22, No. 2, 111–117 (2004).CrossRefGoogle Scholar
  7. 7.
    K. Spodaryk, The influence of low-power laser energy on red blood cell metabolism and deformability, Clin. Hemorheol. Microcirc., 25, Nos. 3–4, 145–151 (2001).Google Scholar
  8. 8.
    V. I. Karandashov and E. B. Petukhov, Change in the rheological properties of blood irradiated by a heliumneon laser, Byull. Éksp. Biol. Med., 121, No. 1, 17–19 (1996).Google Scholar
  9. 9.
    A. A. Spasov, V. V. Nedogoda, O. V. Ostrovskii, and Kuame Konan, Membranotropic action of low-energy laser irradiation of blood, Byull. Eksp. Biol. Med., 126, No. 10, 412–415 (1998).Google Scholar
  10. 10.
    K. G. Karageuzyan, E. S. Sekoyan, A. T. Karagyan, N. R. Pogosyan, G. G. Manucharyan, A. E. Sekoyan, A. Y. Tunyan, V. G. Boyajyan, and M. K. Karageuzyan, Phospholipid pool, lipid peroxidation, and superoxide dismutase activity under various types of oxidative stress of the brain and the effect of low-energy infrared laser irradiation, Biochemistry (Mosc)., 63, No. 10, 1226–1232 (1998).Google Scholar
  11. 11.
    U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and K. J. Halbhuber, Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death, Exp. Cell. Res., 263, No. 1, 88–97 (2001).CrossRefGoogle Scholar
  12. 12.
    A. Amat, J. Rigau, R. W. Waynant, I. K. Ilev, J. Tomas, and J. J. Anders, Modification of the intrinsic fluorescence and the biochemical behavior of ATP after irradiation with visible and near-infrared laser light, J. Photochem. Photobiol. B, 81, No. 1, 26–32 (2005).CrossRefGoogle Scholar
  13. 13.
    G. J. Wang, X. K. Li, K. Sakai, and L. Cai, Low-dose radiation and its clinical implications: diabetes, Hum. Exp. Toxicol., 27, No. 2, 135–142 (2008).CrossRefGoogle Scholar
  14. 14.
    S. S. Huang and R. L. Zheng, Biphasic of angiogenesis by reactive oxygen species, Pharmazie, 61, 223–229 (2006).Google Scholar
  15. 15.
    T. I. Karu, L. V. Pyatibrat, and T. P. Ryabykh, Nonmonotonic behavior of the dose dependence of the radiation effect on cells in vitro exposed to pulsed laser radiation at lambda = 820 nm, Lasers Surg. Med., 21, No. 5, 485–492 (1997).CrossRefGoogle Scholar
  16. 16.
    L. E. Batay, A. A. Demidovich, A. N. Kuzmin, A. N. Titov, M. Mond, and S. Kuck, Efficient tunable laser operation of diode-pumped Yb,Tm:KY(WO4)2 around 1.9 μm, Appl. Phys. B.: Lasers and Optics, 75, 457–461 (2002).CrossRefGoogle Scholar
  17. 17.
    L. E. Batai and A. I. Vodchits, Compact thulium laser with passive heat removal, in: Abstracts of Conf. “Lasers. Measurements. Information-2009, 3–4 June, 2009, SPbGPU, St. Petersburg (2009).Google Scholar
  18. 18.
    V. S. Kamyshnikov, Handbook on Clinicobiochemical Laboratory Diagnostics [in Russian], Vol. 1, Izd. “Belarus,” Minsk (2002).Google Scholar
  19. 19.
    I. V. Yamaikina, Z. P. Shul’man, L. I. Ershova, Z. M. Likhovetskaya, and N. A. Gorbunova, New rheological model for analyzing the aggregatability and deformability of erythrocytes in a number of hematological pathologies, Inzh.-Fiz. Zh., 77, No. 2, 130–133 (2004).Google Scholar
  20. 20.
    R. E. Waugh, M. Narla, C. W. Jackson, T. J. Mueller, T. Suzuki, and G. L. Dale, Rheologic properties of senescent erythrocytes: loss of surface area and volume with red blood cell age, Blood, 79, No. 5, 1351–1358 (1992).Google Scholar
  21. 21.
    H. S. Gokturk, M. Demir, N. A. Ozturk, G. K. Unler, S. Kulaksizoglu, I. Kozanoglu, E. Serin, amd U. Yilmaz, Plasma viscosity changes in patients with liver cirrhosis, South Med. J., 102, No. 10, 1013–1018 (2009).CrossRefGoogle Scholar
  22. 22.
    R. Baba, A. Shibata, and M. Tsurusawa, Single high-dose intravenous immunoglobulin therapy for Kawasaki disease increases plasma viscosity, Circ. J., 69, No. 8, 962–964 (2005).CrossRefGoogle Scholar
  23. 23.
    M. Ercan, C. Koksal, D. Konukoglu, A. K. Bozkurt, and S. Onen, Impaired plasma viscosity via increased cholesterol levels in peripheral occlusive arterial disease [correction of disase], Clin. Hemorheol. Microcirc., 29, No. 1, 3–9 (2003).Google Scholar
  24. 24.
    I. T. Ivanov, Allometric dependence of the life span of mammal erythrocytes on thermal stability and sphingomyelin content of plasma membranes, Comp. Biochem. Physiol. A Mol. Integr. Physiol., 147, No. 4, 876–884 (2007).CrossRefGoogle Scholar
  25. 25.
    I. V. Yamaikina and E. A. Chernitskii, Denaturation of hemoglobin as the first stage of thermohemolysis of erythrocytes, Biofizika, 34, Issue 4, 656–659 (1989).Google Scholar
  26. 26.
    G. J. Bosman, E. Lasonder, Y. A. Groenen-Döpp, F. L. Willekens, J. M. Werre, and V. M. Novotný, Comparative proteomics of erythrocyte aging in vivo and in vitro, J. Proteomics, 73, No. 3, 396–402 (2010).CrossRefGoogle Scholar
  27. 27.
    F. L. Willekens, F. H. Bosch, B. Roerdinkholder-Stoelwinder, Y. A. Groenen-Döpp, and J. M. Werre, Quantification of loss of haemoglobin components from the circulating red blood cell in vivo, Eur. J. Haematol., 58, No. 4, 246–250 (1997).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • I. V. Yamaikina
    • 1
  • V. A. Mansurov
    • 2
  • N. B. Gorbunova
    • 3
  • L. E. Batai
    • 4
  • V. S. Ulashchik
    • 3
  • V. A. Orlovich
    • 4
  1. 1.A. V. Luikov Heat and Mass Transfer InstituteNational Academy of Sciences of BelarusMinskBelarus
  2. 2.Belarusian State Medical UniversityMinskBelarus
  3. 3.Physiology InstituteNational Academy of Sciences of BelarusMinskBelarus
  4. 4.B. I. Stepanov Institute of PhysicsNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations