Skip to main content
Log in

Heat and mass transfer in the system hydrocarbon gas–porous carbon layer–metal and formation of supersaturated solid carbon solutions

  • Nanostructures
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

It is shown that the carbon layer formed on the catalytic surface of a metal plays an important role in industrial technologies of obtaining carbon nanofibers. The effective heat conduction of porous carbon samples was measured. A mathematical model of the heat and mass transfer inside a carbon layer has been developed and its stationary solutions were investigated. It is shown that a decrease in the thickness of a porous carbon layer on the surface of a metal as a result of its cleaning and a further growth of this layer lead to the formation of a supersaturated solid solution of carbon in the metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. J. Verissimo, M. R. Aguiar, and S. A. Moshkalev, Formation of catalyst nanoparticles and nucleation of carbon nanotubes in chemical vapor deposition, J. Nanosci. Nanotechnol., 8, 1–8 (2008).

    Article  Google Scholar 

  2. V. Labunov, B. Shulitski, A. Prudnikava, and A. Basaev, Multi-level composite nanostructures based on the arrays of vertically aligned carbon nanotubes and planar graphite layers, Phys. Status Solidi A, 208, No. 2, 453–458 (2011).

    Article  Google Scholar 

  3. S. P. Fisenko and F. N. Borovik, Nucleation in a catalytic nanodroplet and growth of nanowires, Tech. Phys., 54, No. 9, 246–252 (2009).

    Article  Google Scholar 

  4. S. A. Zhdanok, V. V. Martynenko, S. P. Fisenko, et al., Coalescence and the initial stage of formation of nanofibers by the "vapor–liquid–solid" scheme, Inzh.-Fiz. Zh., 83, No. 3, 417–420 (2010).

    Google Scholar 

  5. C. E. Baddour, F. Fadlallah, D. Nasuhoglu, et al., A simple thermal CVD method for carbon nanotube synthesis on stainless steel 304 without the addition of an external catalyst, Carbon, 47, 313–347 (2008).

    Article  Google Scholar 

  6. S. A. Zhdanok, I. F. Buyakov, A. V. Krauklis, et al., On the formation of carbon nanostructures on the steel surface of a reactor as a result of the decomposition of hydrocarbons in the low-temperature plasma. 1. Experimental setup. Determination of basic mechanisms, estimation of the production rate, Inzh.-Fiz. Zh., 82, No. 3, 413–419 (2009).

    Google Scholar 

  7. S. P. Fisenko, B. N. Bazylev, and H. Wuerz, High-temperature deposition of carbon films, J. Eng. Phys. Thermophys., 76, No. 4, 743–747 (2003).

    Article  Google Scholar 

  8. Y. A. Baranyshin, S. P. Fisenko, and O. G. Penyazkov, Heat transfer and growth of nano- and submicron particles of black carbon in nonequilibrium gas mixture. Experiment and simulation, Int. J. Heat Mass Transfer, 53, issue 23/24, 5465–5471 (2010).

    Article  Google Scholar 

  9. Z. A. Mansurov, Formation of soot from polycyclic aromatic hydrocarbons as well as fullerenes and carbon nanotubes in the combustion of hydrocarbon, Inzh.-Fiz. Zh., 84, No. 1, 116–149 (2011).

    Google Scholar 

  10. L. E. Evseeva and S. A. Tanaeva, Thermal conductivity of micro- and nanostructural epoxide composites at low temperatures, Mekh. Kompozit. Mater., 44, No. 1, 117–126 (2008).

    Google Scholar 

  11. M. E. Kompan, F. M. Kompan, P. V. Gladkikh, et al., Thermal conductivity of a composite medium with dispersed graphene filler, Zh. Tekh. Fiz., 81, No. 8, 15–19 (2011).

    Google Scholar 

  12. N. V. Pavlyukevich, Introduction to the Theory of Heat and Mass Transfer in Porous Media [in Russian], ITMO im. A. V. Lykova NAN Belarusi, Minsk (2002).

    Google Scholar 

  13. G. A. Baker, Jr. and P. Graves-Morris, Pade Approximants, Addition-Wesley, London (1981).

    Google Scholar 

  14. R. C. Reid, J. Prausnitz, and T. K. Sherwood, The Properties of Gases and Liquids [Russian translation], Khimiya, Leningrad (1982).

    Google Scholar 

  15. V. A. Kurbatov and S. P. Fisenko, Calculation of thermal conductivities of ternary gas mixtures, J. Eng. Phys. Thermophys., 66, No. 3, 295–298 (1994).

    Article  Google Scholar 

  16. N. N. Kalitkin, Numerical Methods [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  17. V. P. Krainov, Qualitative Methods in Physical Kinetics and Hydrodynamics, American Institute of Physics, New York (1992).

    Google Scholar 

  18. D. A. Takopulo and S. P. Fisenko, On formation of carbon clusters on a substrate in plasma pyrolysis of hydrocarbon gases, Inzh.-Fiz. Zh., 84, No. 5, 1004–1007 (2011).

    Google Scholar 

  19. S. P. Fisenko, F. N. Borovik, and S. A. Zhdanok, A method of obtaining carbon nanofibers, Patent 14051 of the Republic of Belarus, Published 28.02.2011, Byull. No. 1, p. 98.

  20. S. A. Zhdanok, K. O. Borisevich, M. V. Kiyashko, et al., On the conditions of formation of carbon nanostructures on the steel reactor surface from the products of hydrocarbon decomposition in a low-temperature plasma. 3. Depth analysis of the material, hypothesis of the growth mechanism, Inzh.-Fiz. Zh., 84, No. 3, 491–497 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Fisenko.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 85, No. 3, pp. 503–511, May–June, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takopulo, D.A., Fisenko, S.P. Heat and mass transfer in the system hydrocarbon gas–porous carbon layer–metal and formation of supersaturated solid carbon solutions. J Eng Phys Thermophy 85, 539–548 (2012). https://doi.org/10.1007/s10891-012-0684-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-012-0684-z

Keywords

Navigation