Heat and mass transfer in the system hydrocarbon gas–porous carbon layer–metal and formation of supersaturated solid carbon solutions


It is shown that the carbon layer formed on the catalytic surface of a metal plays an important role in industrial technologies of obtaining carbon nanofibers. The effective heat conduction of porous carbon samples was measured. A mathematical model of the heat and mass transfer inside a carbon layer has been developed and its stationary solutions were investigated. It is shown that a decrease in the thickness of a porous carbon layer on the surface of a metal as a result of its cleaning and a further growth of this layer lead to the formation of a supersaturated solid solution of carbon in the metal.


effective heat conduction of a porous layer diffusion of carbon time of establishment of a stationary regime Padé approximation solubility of carbon in a metal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. J. Verissimo, M. R. Aguiar, and S. A. Moshkalev, Formation of catalyst nanoparticles and nucleation of carbon nanotubes in chemical vapor deposition, J. Nanosci. Nanotechnol., 8, 1–8 (2008).CrossRefGoogle Scholar
  2. 2.
    V. Labunov, B. Shulitski, A. Prudnikava, and A. Basaev, Multi-level composite nanostructures based on the arrays of vertically aligned carbon nanotubes and planar graphite layers, Phys. Status Solidi A, 208, No. 2, 453–458 (2011).CrossRefGoogle Scholar
  3. 3.
    S. P. Fisenko and F. N. Borovik, Nucleation in a catalytic nanodroplet and growth of nanowires, Tech. Phys., 54, No. 9, 246–252 (2009).CrossRefGoogle Scholar
  4. 4.
    S. A. Zhdanok, V. V. Martynenko, S. P. Fisenko, et al., Coalescence and the initial stage of formation of nanofibers by the "vapor–liquid–solid" scheme, Inzh.-Fiz. Zh., 83, No. 3, 417–420 (2010).Google Scholar
  5. 5.
    C. E. Baddour, F. Fadlallah, D. Nasuhoglu, et al., A simple thermal CVD method for carbon nanotube synthesis on stainless steel 304 without the addition of an external catalyst, Carbon, 47, 313–347 (2008).CrossRefGoogle Scholar
  6. 6.
    S. A. Zhdanok, I. F. Buyakov, A. V. Krauklis, et al., On the formation of carbon nanostructures on the steel surface of a reactor as a result of the decomposition of hydrocarbons in the low-temperature plasma. 1. Experimental setup. Determination of basic mechanisms, estimation of the production rate, Inzh.-Fiz. Zh., 82, No. 3, 413–419 (2009).Google Scholar
  7. 7.
    S. P. Fisenko, B. N. Bazylev, and H. Wuerz, High-temperature deposition of carbon films, J. Eng. Phys. Thermophys., 76, No. 4, 743–747 (2003).CrossRefGoogle Scholar
  8. 8.
    Y. A. Baranyshin, S. P. Fisenko, and O. G. Penyazkov, Heat transfer and growth of nano- and submicron particles of black carbon in nonequilibrium gas mixture. Experiment and simulation, Int. J. Heat Mass Transfer, 53, issue 23/24, 5465–5471 (2010).CrossRefGoogle Scholar
  9. 9.
    Z. A. Mansurov, Formation of soot from polycyclic aromatic hydrocarbons as well as fullerenes and carbon nanotubes in the combustion of hydrocarbon, Inzh.-Fiz. Zh., 84, No. 1, 116–149 (2011).Google Scholar
  10. 10.
    L. E. Evseeva and S. A. Tanaeva, Thermal conductivity of micro- and nanostructural epoxide composites at low temperatures, Mekh. Kompozit. Mater., 44, No. 1, 117–126 (2008).Google Scholar
  11. 11.
    M. E. Kompan, F. M. Kompan, P. V. Gladkikh, et al., Thermal conductivity of a composite medium with dispersed graphene filler, Zh. Tekh. Fiz., 81, No. 8, 15–19 (2011).Google Scholar
  12. 12.
    N. V. Pavlyukevich, Introduction to the Theory of Heat and Mass Transfer in Porous Media [in Russian], ITMO im. A. V. Lykova NAN Belarusi, Minsk (2002).Google Scholar
  13. 13.
    G. A. Baker, Jr. and P. Graves-Morris, Pade Approximants, Addition-Wesley, London (1981).Google Scholar
  14. 14.
    R. C. Reid, J. Prausnitz, and T. K. Sherwood, The Properties of Gases and Liquids [Russian translation], Khimiya, Leningrad (1982).Google Scholar
  15. 15.
    V. A. Kurbatov and S. P. Fisenko, Calculation of thermal conductivities of ternary gas mixtures, J. Eng. Phys. Thermophys., 66, No. 3, 295–298 (1994).CrossRefGoogle Scholar
  16. 16.
    N. N. Kalitkin, Numerical Methods [in Russian], Nauka, Moscow (1978).Google Scholar
  17. 17.
    V. P. Krainov, Qualitative Methods in Physical Kinetics and Hydrodynamics, American Institute of Physics, New York (1992).Google Scholar
  18. 18.
    D. A. Takopulo and S. P. Fisenko, On formation of carbon clusters on a substrate in plasma pyrolysis of hydrocarbon gases, Inzh.-Fiz. Zh., 84, No. 5, 1004–1007 (2011).Google Scholar
  19. 19.
    S. P. Fisenko, F. N. Borovik, and S. A. Zhdanok, A method of obtaining carbon nanofibers, Patent 14051 of the Republic of Belarus, Published 28.02.2011, Byull. No. 1, p. 98.Google Scholar
  20. 20.
    S. A. Zhdanok, K. O. Borisevich, M. V. Kiyashko, et al., On the conditions of formation of carbon nanostructures on the steel reactor surface from the products of hydrocarbon decomposition in a low-temperature plasma. 3. Depth analysis of the material, hypothesis of the growth mechanism, Inzh.-Fiz. Zh., 84, No. 3, 491–497 (2011).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  1. 1.A. V. Luikov Heat and Mass Transfer InstituteNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations