Parameters, limits, attenuation, and suppression of detonation in mixtures of an explosive gas with chemically inert microparticles

  • A. V. Fedorov
  • P. A. Fomin
  • D. A. Tropin
  • Z.-R. Chen

Chapman–Jouguet parameters and the cell size of a detonation wave in mixtures of an explosive gas with chemically inert particles have been calculated. The algorithm of calculation of the minimum mass and characteristic dimension of a particle cloud ensuring successful suppression of detonation in the gas has been proposed. The calculation results are in good agreement with the available experimental data. The influence of the initial composition of the gas on the efficiency of suppression of the detonation wave has been analyzed. The issue of the dependence of the concentration limits of detonation on the mass fraction of particles has been investigated. It has been established that the increase in the concentration of the condensed phase leads to a narrowing of the existence domain of detonation and that the propagation of the detonation wave becomes impossible when the concentration of the particles is fairly high.


suppression of gaseous detonation gas–particles mixture cell explosion safety 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Wolinski and P. Wolanski, Gaseous detonation processes in presence of inert particles, Archivum Combustionis, 7, No. 3/4, 353–370 (1987).Google Scholar
  2. 2.
    Z. Chen, B. Fan, and X. Jiang, Suppression effects of powder suppressant on the explosions of oxyhydrogen gas, J. Loss Prevent. Process Ind., 19, 648–655 (2006).CrossRefGoogle Scholar
  3. 3.
    J. Dong, B. Fan, B. Xie, and J. Ye, Experimental investigation and numerical validation of explosion suppression by inert particles in large-scale duct, Proc. Combust. Inst., 30, 2361–2368 (2005).CrossRefGoogle Scholar
  4. 4.
    A. A. Borisov and B. E. Gel’fand, On calculation of the parameters of detonation waves in gases and twophase systems, Fiz. Goreniya Vzryva, 6, No. 2, 186–195 (1970).Google Scholar
  5. 5.
    Yu. V. Kazakov, A. V. Fedorov, and V. M. Fomin, Detonation Dynamics of Gas Suspensions, Preprint No. 23–87 of the M. A. Lavrentiev Institute of Hydrodynamics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (1987).Google Scholar
  6. 6.
    Yu. V. Kazakov, A. V. Fedorov, and V. M. Fomin, Regimes of normal detonation in relaxing media, Fiz. Goreniya Vzryva, 25, No. 1, 119–127 (1989).Google Scholar
  7. 7.
    Yu. V. Kazakov, Yu. V. Mironov, and A. V. Fedorov, Calculation of gaseous mixture detonation in the presence of inert solid particles, Model. Mekh., 5 (22), No. 3, 152–162 (1991).Google Scholar
  8. 8.
    A. V. Fedorov and V. M. Fomin, Detonation of the gas mixtures with inert solid particles, Proc. UTAM Symp. on Combustion in Supersonic Flows, Kluwer Academic Publishers (1997), pp. 147–191.Google Scholar
  9. 9.
    E. Loth, S. Sivier, and J. Baum, Dusty detonation simulations with adaptive unstructured finite elements, AIAA J., 35, 1018–1024 (1997).MATHCrossRefGoogle Scholar
  10. 10.
    Y. Ju and C. K. Law, Propagation and quenching of detonation waves in particle laden mixtures, Combust. Flame, 129, 356–364 (2002).CrossRefGoogle Scholar
  11. 11.
    M. V. Papalexandris, Numerical simulation of detonations in mixtures of gases and solid particles, J. Fluid Mech., 507, 95–142 (2004).MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    M. V. Papalexandris, Influence of inert particles on the propagation of multidimensional detonation waves, Combust. Flame, 141, 216–228 (2005).CrossRefGoogle Scholar
  13. 13.
    A. V. Fedorov, D. A. Tropin, and I. A. Bedarev, Mathematical simulation of the suppression of detonation of a hydrogen–oxygen mixture by inert particles, Fiz. Goreniya Vzryva, 46, No. 3, 103–115 (2010).Google Scholar
  14. 14.
    P. A. Fomin and J.-R. Chen, Influence of chemically inert particles on the parameters and suppression of detonation in gases, Fiz. Goreniya Vzryva, 45, No. 3, 77–88 (2009).Google Scholar
  15. 15.
    R. Bouchet and P. Laffitte, L’extinction des ondes par les substances pulvérisées, C.R.A.S, 246, 1858–1861 (1958).Google Scholar
  16. 16.
    P. Laffitte and R. Bouchet, Suppression of explosion waves in gaseous mixtures by means of fine powders, Proc. 7th Int. Symp. on Combustion, Butterworth, London (1959). P. 504.Google Scholar
  17. 17.
    A. A. Borisov, B. E. Gel’fand, S. A. Gubin, and S. M. Kogarko, Influence of solid inert particles on detonation of a combustible gaseous mixture, Fiz. Goreniya Vzryva, 11, No. 6, 909–914 (1975).Google Scholar
  18. 18.
    Yu. A. Nikolaev and P. A. Fomin, On calculation of equilibrium flows of chemically reactive gases, Fiz. Goreniya Vzryva, 18, No. 1, 66–72 (1982).Google Scholar
  19. 19.
    Yu. A. Nikolaev and P. A. Fomin, Approximate equation of kinetics in heterogeneous gas–condensed phase-type systems, Fiz. Goreniya Vzryva, 19, No. 6, 49–58 (1983).Google Scholar
  20. 20.
    Yu. A. Nikolaev and D. V. Zak, Matching of the models of chemical reactions in gases with the second law of thermodynamics, Fiz. Goreniya Vzryva, 24, No. 4, 87–90 (1988).Google Scholar
  21. 21.
    P. A. Fomin and A. V. Trotsyuk, Approximate calculation of the isentropy of a chemically equilibrium gas, Fiz. Goreniya Vzryva, 31, No. 4, 59–62 (1995).Google Scholar
  22. 22.
    Yu. A. Nikolaev and O. A. Gaponov, On the limits of detonation in gases, Fiz. Goreniya Vzryva, 31, No. 3, 139–145 (1995).Google Scholar
  23. 23.
    Yu. A. Nikolaev and P. A. Fomin, Model of stationary heterogeneous detonation in a gas–liquid medium, Fiz. Goreniya Vzryva, 20, No. 4, 97–105 (1984).Google Scholar
  24. 24.
    P. A. Fomin, K. S. Mitropetros, and H. Hieronymus, Modeling of detonation processes in chemically active bubble systems at normal and elevated initial pressures, J. Loss Prevent. Process Ind., 16, No. 4, 323–331 (2003).CrossRefGoogle Scholar
  25. 25.
    S. A. Zhdan, V. V. Mitrofanov, and A. I. Sychev, Magnitude of the reactive pulse induced by gaseous mixture explosion in a semi-infinite space, Fiz. Goreniya Vzryva, 30, No. 5, 90–97 (1994).Google Scholar
  26. 26.
    T. P. Gavrilenko, V. V. Grigoriev, S. A. Zhdan, Yu. A. Nikolaev, V. M. Boiko, and A. N. Papyrin, Acceleration of solid particles by gaseous detonation products, Combust. Flame, 66, 121–128 (1986).CrossRefGoogle Scholar
  27. 27.
    V. P. Glushko (Ed.), Thermodynamic Properties of Individual Substances [in Russian], Vol. 2, Izd. AN SSSR, Moscow (1962).Google Scholar
  28. 28.
    V. P. Glushko (Ed.), Thermal Constants of Substances [in Russian], VINITI, Moscow (1965–1982).Google Scholar
  29. 29.
    D. R. Stull and H. Prohet, The JANAF Thermochemical Tables, 2nd Edition, NSRDS-NBS-37, Washington (1971).Google Scholar
  30. 30.
    K. Mitropetros, P. A. Fomin, and H. Hieronymus, Behavior of the surface of a bubbly liquid after detonation wave impact, Exp. Fluids, 40, No. 3, 431–441 (2006).CrossRefGoogle Scholar
  31. 31.
    I. K. Kikoin (Ed.), Tables of Physical Quantities [in Russian], Atomizdat, Moscow (1976).Google Scholar
  32. 32.
    D. R. Lide (Ed.), CRC Handbook of Chemistry and Physics, 75th Edition, CRC Press, London, Tokyo, Boca Raton, Ann Arbor (1994).Google Scholar
  33. 33.
    A. A. Vasil’ev, V. V. Mitrofanov, and M. E. Topchiyan, Detonation waves in gases, Fiz. Goreniya Vzryva, 23, No. 5, 109–131 (1987).Google Scholar
  34. 34.
    A. A. Vasil’ev and Yu. A. Nikolaev, Model of a cell of multifront gaseous detonation, Fiz. Goreniya Vzryva, 12, No. 5, 744–754 (1976).Google Scholar
  35. 35.
    A. A. Vasil’ev, Yu. A. Nikolaev, and V. Yu. Ul’yanitskii, Calculation of the multifront gaseous detonation cell parameters, Fiz. Goreniya Vzryva, 13, No. 3, 404–408 (1977).Google Scholar
  36. 36.
    A. A. Vasil’ev, M. E. Topchiyan, and V. Yu. Ul’yanitskii, Influence of initial temperature on the gaseous detonation parameters, Fiz. Goreniya Vzryva, 15, No. 6, 149–152 (1979).Google Scholar
  37. 37.
    G. L. Schott and J. L. Kinsey, Kinetic studies of hydroxyl radicals in shock waves. II. Induction times in the hydrogen–oxygen interaction, J. Chem. Phys., 29, No. 5, 1177–1182 (1958).CrossRefGoogle Scholar
  38. 38.
    D. R. White, Density induction times in very lean mixtures of D2, H2, C2H2 and C2H4 with O2, in: Proc. XI Int. Symp. on Combustion, Academic Press, Pittsburgh (1967), pp. 147154.Google Scholar
  39. 39.
    Yu. A. Nikolaev, A. A. Vasil’ev, and V. Yu. Ul’yanitskii, Gaseous detonation and its application in techniques and technologies (Review), Fiz. Goreniya Vzryva, 39, No. 4, 22–54 (2003).Google Scholar
  40. 40.
    A. A. Vasiliev, T. P. Gavrilenko, and M. E. Topchian, On the Chapman–Jouguet surface in multi-headed gaseous detonations, Astronaut. Acta, 17, Nos. 4–5, 499–502 (1972).Google Scholar
  41. 41.
    R. A. Strehlow, Combustion Fundamentals, McGraw-Hill Book Company, New York (1985).Google Scholar
  42. 42.
    K. Terao and H. Kobayashi, Experimental study on suppression of detonation waves, Jpn. J. Appl. Phys., 21, Vol. 11, 1577–1579 (1982).CrossRefGoogle Scholar
  43. 43.
    M. Nettleton, Gaseous Detonations: Their Nature, Effects and Control, Chapman and Hall, London, New York (1987).Google Scholar
  44. 44.
    A. A. Vasil’ev, Gaseous detonation and its application in technique and technology, in: Proc. European Combustion Meeting (ECM-2003), Belgium, Louvain-la-Neuve (2003), CD-ROM Disc.Google Scholar
  45. 45.
    A. A. Vasil’ev, A. I. Valishev, V. A. Vasil’ev, L. V. Panfilova, and M. E. Topchian, Detonation hazards of methane mixtures, Archivum Combustionis, 20, Nos. 3–4, 31–48 (2000).Google Scholar
  46. 46.
    P. Wolanski, J. C. Liu, C. W. Kauffman, J. A. Nicholls, and M. Sichel, The effect of inert particles on methane–air detonations, Archivum Combustionis, 8, No. 1, 15–32 (1988).Google Scholar
  47. 47.
    C. W. Kauffman, P. Wolanski, A. Arisoy, P. R. Adams, B. N. Maker, and J. A. Nicholls, Dust, Hybrid, and Dusty Detonations. Dynamics of Shock Waves, Explosions, and Detonations, in: J. R. Bowen, N. Manson, A. K. Oppenheim, and R. I. Soloukhin (Eds.), Progress in Astronautics and Aeronautics, Vol. 94, ISBN 0-915928-91-4, pp. 221–240 (1984).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • A. V. Fedorov
    • 1
  • P. A. Fomin
    • 2
  • D. A. Tropin
    • 1
  • Z.-R. Chen
    • 3
  1. 1.S. A. Khristianovich Institute of Theoretical and Applied MechanicsSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.M. A. Lavrentiev Institute of HydrodynamicsSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  3. 3.National Kaohsiung Fisrt University of Science and TechnologyKaohsiungTaiwan

Personalised recommendations