Skip to main content
Log in

Influence of the barrier discharge on the aerodynamic drag of the Zhukovskii airfoil under various air flow conditions

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The influence of the dielectric barrier discharge plasma on the total aerodynamic drag of the Zhukovskii airfoil has been investigated. With the use of the Pitot–Prandtl tube the velocity distribution of discharge-induced ion wind at a distance of 18 mm from the trailing edge of the airfoil has been measured experimentally. It has been shown that the influence of the discharge leads to a decrease in the aerodynamic drag by a value from 10 to 34% depending on the incident flow parameters and the operating conditions of the discharge system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. I. Font, S. Jung, C. L. Enloe, T. E. McLaughlin, W. L. Morgan, and J. W. Baughn, Simulation of the effects of force and heat produced by a plasma actuator on neutral flow evolution, Proc. 44th AIAA Aerospace Sciences Meeting and Exhibit AIAA, 9–12 January 2006, Reno, Nevada.

  2. J. W. Baughn, C. O. Porter, B. L. Peterson, T. E. McLaughlin, C. L. Enloe, G. I. Font, and C. Baird, Momentum transfer for an aerodynamic plasma actuator with an imposed boundary layer, in: Proc. 44th AIAA Aerospace Sciences Meeting and Exhibit AIAA, 9–12 January 2006, Reno, Nevada (2006).

  3. W. Kim, H. Do, M. G. Mungal, and M. A. Cappelli, On the role of oxygen in dielectric barrier discharge actuation of aerodynamic flows, Appl. Phys. Lett., 91, No. 181501 (2007).

    Google Scholar 

  4. S. A. Stanfield, A Spectroscopic Investigation of a Surface-Discharge-Mode, Dielectric Barrier Discharge, Ph.D. Thesis, Wright State University (2009).

  5. M. Forte, J. Jolibois, E. Moreau, G. Touchard, and M. Cazalens, Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity-application to airflow control, in: Proc. 3rd AIAA Flow Control Conf., AIAA 2006-2863 (2006).

  6. N. Balcon, N. Benard, Y. Lagmich, J.-P. Boeuf, G. Touchard, and E. Moreau, Positive and negative sawtooth signals applied to a DBD plasma actuator–influence on the electric wind, J. Electrost., 67, 140–145 (2009).

    Article  Google Scholar 

  7. P. P. Khramtsov, O. G. Penyazkov, M. Yu. Chernik, V. N. Grishchenko, I. N. Shatan, and I. A. Shikh, Aerodynamic drag of a plate in an ionized gas flow induced by a near-surface high-frequency barrier discharge, Inzh.-Fiz. Zh., 82, No 4, 726–731 (2009).

    Google Scholar 

  8. P. P. Khramtsov, O. G. Penyazkov, I. A. Shikh, M. Yu. Chernik, and I. N. Shatan, Influence of ion wind on the structure of the dynamic boundary layer over a flat plate, in: Proc. VI Minsk Int. Heat Mass Transfer Forum MIF-2008, 19–23 May 2008, Nos. 1–48, Minsk (2008).

  9. A. Sidorenko, B. Zanin, B. Postnikov, A. Starikovskii, D. Roupassov, I. Zavialov, N. Malmuth, P. Smereczniak, and J. Silkey, Pulsed discharge actuators for rectangular wing separation control, Paper AIAA, Nos. 2007–941 (2007).

  10. J. R. Roth and Xin Dai, Optimization of the aerodynamic plasma actuator as an electrohydrodynamic (EHD) electrical device, in: Proc. 44th AIAA Aerospace Sciences Meeting and Exhibit, 9–12 January 2006, Reno, Nevada, AIAA 2006-1203.

  11. V. P. Shorin, O. A. Zhuravlev, A. I. Fedosov, and V. P. Markov, Processes of Formation of a Sliding Charge on Dielectric Substrates with a Potential Barrier [in Russian], Logos, Moscow (2000).

    Google Scholar 

  12. R. Sosa, E. Arnaud, E. Memin, and G. Artana, Study of the flow induced by a sliding discharge, Dielectr. Electr. Insul., 16, No. 2, 305–311 (2009).

    Article  Google Scholar 

  13. J. W. Ferry and J. L. Rovey, Thrust measurement of dielectric barrier discharge plasma actuators and power requirements for aerodynamic control, in: Proc. 5th Flow Control Conf., 28 June–1 July 2010, Chicago, Illinois AIAA 2010-4982.

  14. P. P. Khramtsov, O. G. Penyazkov, M. Yu. Chernik, V. N. Grishchenko, I. N. Shatan, and I. A. Shikh, Shadow method for measuring the electron density in the barrier discharge plasma on the Zhukovskii airfoil surface, Inzh.-Fiz. Zh., 84, No. 2, 1246–1251 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 84, No. 6, pp. 1252–1256, November–December, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khramtsov, P.P., Penyazkov, O.G., Grishchenko, V.M. et al. Influence of the barrier discharge on the aerodynamic drag of the Zhukovskii airfoil under various air flow conditions. J Eng Phys Thermophy 84, 1348–1352 (2011). https://doi.org/10.1007/s10891-011-0604-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-011-0604-7

Keywords

Navigation