Skip to main content
Log in

Shadow method for measuring the electron density in a barrier discharge plasma on the Zhukovskii airfoil surface

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

We have measured the electron temperature and density distributions in an ionized gas flow initiated by a high-frequency barrier discharge on the Zhukovskii airfoil surface by the method of photometry of shadow patterns for two probe radiation wavelength λr = 0.675 μm and λb = 0.425 μm. The investigation was carried out in air at atmospheric pressure. The maximum value of the electron density was N e ∼ 2.2⋅1015 cm−3 with an insignificant change in the air temperature in the discharge gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Likhanskii, M. N. Shneider, S. O. Macheret, and R. B. Miles, Modeling of interaction between weakly ionized near-surface plasmas and gas flow, in: Proc. 44th AIAA Aerospace Sciences Meeting and Exhibit, 9–12 January 2006, Reno, Nevada, AIAA-1204 (2006).

  2. P. P. Khramtsov, O. G. Penyazkov, M. V. Doroshko, M. Yu. Chernik, and I. A. Shikh, Shadow method for measuring the average electron density in an ionized gas flow induced by a high-frequency barrier discharge, Inzh.-Fiz. Zh., 82, No. 2, 364–370 (2009).

    Google Scholar 

  3. P. P. Khramtsov, O. G. Penyazkov, V. N. Grishchenko, M. V. Doroshko, M. Yu. Chernik, and I. A. Shikh, Diagnostics of the averaged temperature fields and electron densities in the barrier discharge plasma in the presence of air flow, Inzh.-Fiz. Zh., 82, No. 6, 1125–1131 (2009).

    Google Scholar 

  4. Yun Wu, Yinghong Li, Min Jia, Huimin Song, Zhigang Guo, Ximing Zhu, and Yikang Pu, Influence of operating pressure on surface dielectric barrier discharge plasma aerodynamic actuation characteristics, Appl. Phys. Lett., 9193, No. 031503 (2008).

  5. U. Kogelschatz, Dielectric-barrier discharges: their history, discharge physics, and industrial applications, Plasma Chem. Plasma Process., 23, No. 1, 1–46 (2003).

    Article  Google Scholar 

  6. A. N. Laskovski, Biomedical Engineering, Trends in Materials Science, 2011, ISBN 978-953-307-513-6, pp. 123–150. www.intechopen.com.

  7. A. K. Srivastava and G. Prasad, Observation of self-excited ionization waves in a planar dielectric barrier discharge system at atmospheric pressure, in: Proc. 25th Nat. Symp. on Plasma Sci. and Technol. (PLASMA-2010) IASST, 8–11 December 2010, Guwahati, India. Poster No. BP-26.

  8. Wu Yun, Li Yinghong, Jia Min, Song Huimin, Su Changbing, and Pu Yikang, Experimental investigation into characteristics of plasma aerodynamic actuation generated by dielectric barrier discharge, Chin. J. Aeronaut., 23, Issue 1, 39–45 (2010).

    Article  Google Scholar 

  9. Li Gang, Zhang Yi, Xu Yan-Ji, Lin Bin, Li Yu-Tong, and Zhu Jun-Qiang, Measurement of plasma density produced in dielectric barrier discharge for active aerodynamic control with interferometer, Chinese Phys. Lett., 26, Issue 10, No. 105202 (2009).

  10. Xin Pei Lu and Mounir Laroussi, Electron density and temperature measurement of an atmospheric pressure plasma by millimeter wave interferometer, Appl. Phys. Lett., 92, No. 051501, 92–93 (2008).

    Google Scholar 

  11. P. P. Khramtsov, O. G. Penyazkov, V. N. Grishchenko, M. Yu. Chernik, I. N. Shatan, and I. A. Shikh, Influence of the barrier discharge on the aerodynamic drag of the Zhukovskii airfoil under various air flow conditions, Inzh.-Fiz. Zh., 84, No. 6, 1252–1256 (2011).

    Google Scholar 

  12. L. A. Vasiliev, Shadow Methods [in Russian], Nauka, Moscow (1968).

    Google Scholar 

  13. R. Huddelstone and S. Leonard, Plasma Diagnostic Techniques [Russian translation], Mir, Moscow (1967).

    Google Scholar 

  14. R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using MATLAB [Russian translation], Tekhnosfera, Moscow (2006).

    Google Scholar 

  15. B. Edlén, The refractive index of air, Metrologia, 2, 71–80 (1966).

    Article  Google Scholar 

  16. K. P. Birch and M. J. Downs, An updated Edlén equation for the refractive index of air, Metrologia, 30, 155–162 (1993).

    Article  Google Scholar 

  17. K. P. Birch and M. J. Downs, Correction to the updated Edlén equation for the refractive index of air, Metrologia, 31, 315–316 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 84, No. 6, pp. 1246–1251, November–December, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khramtsov, P.P., Penyazkov, O.G., Chernik, M.Y. et al. Shadow method for measuring the electron density in a barrier discharge plasma on the Zhukovskii airfoil surface. J Eng Phys Thermophy 84, 1341–1347 (2011). https://doi.org/10.1007/s10891-011-0603-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-011-0603-8

Keywords

Navigation