Advertisement

Journal of Engineering Physics and Thermophysics

, Volume 83, Issue 6, pp 1244–1274 | Cite as

Excitation and quenching of detonation in gases

  • V. A. Levin
  • I. S. Manuilovich
  • V. V. Markov
Article
  • 76 Downloads

The results of investigations on the problems of initiation, propagation, and stabilization of detonation waves and flowing combustible gaseous mixtures are presented. To describe the flows, we used ideal perfect gas equations and two models of the detonation wave: the classical infinitely thin model and a model in which behind the shock wave chemical reactions described by the single-stage kinetics for propane– and methane–air combustible mixtures proceed. Investigations were carried out by both analytical and numerical methods based on the S. K. Godunov scheme on stationary and movable computational meshes with explicit resolution of the bow shock and the surfaces separating gases with different properties.

Keywords

detonation combustion initiation optimization stabilization channel structure of the detonation wave numerical simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. I. Soloukhin, Detonation waves in gases, Usp. Fiz. Nauk, 80, Issue 4, 525–551 (1963).Google Scholar
  2. 2.
    R. I. Soloukhin, Exothermal zone reaction in a one-dimensional shock wave in a gas, Fiz. Goreniya Vzryva, No. 3, 12–18 (1966).Google Scholar
  3. 3.
    R. I. Soloukhin, Measuring Methods and Principal Results of Experiments on Shock Tubes [in Russian], Novosibirsk (1969).Google Scholar
  4. 4.
    J. H. Lee, R. I. Soloukhin, and A. K. Oppenheim, Current views on gaseous detonation, Astronautica Acta, 14, No. 5, 565–584 (1969).Google Scholar
  5. 5.
    V. F. Klimkin, R. I. Soloukhin, and P. Wolansky, Initial stages of a spherical detonation directly initiated by a laser spark, Combust. Flame, 21, No. 2, 73–77 (1973).Google Scholar
  6. 6.
    R. I. Soloukhin, Shock Waves and Detonation in Gases [in Russian], Fizmatgiz, Moscow (1963).Google Scholar
  7. 7.
    V. V. Mitrofanov and R. I. Soloukhin, On the diffraction of a multifront detonation wave, Dokl. Akad. Nauk SSSR, 159, No. 5, 1003–1006 (1964).Google Scholar
  8. 8.
    R. I. Soloukhin, The structure of a multifront detonation wave in a gas, Fiz. Goreniya Vzryva, No. 2, 35–42 (1965).Google Scholar
  9. 9.
    A. K. Oppenheim and R. I. Soloukhin, Experiments in gasdynamics of explosions, Ann. Rev. Fluid Mech., 5, Palo Alto, USA (1973), pp. 31–55.Google Scholar
  10. 10.
    V. P. Korobeinikov and V. A. Levin, Strong explosion in a combustible mixture of gases, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 6, 48–51 (1969).Google Scholar
  11. 11.
    G. G. Chernyi, Asymptotic law of propagation of a plane detonation wave, Dokl. Akad. Nauk SSSR, 172, No. 3, 558–560 (1967).Google Scholar
  12. 12.
    V. A. Levin and G. G. Chernyi, Asymptotic laws of the behavior of detonation waves, Prikl. Mat. Mekh., 31, Issue 3, 383–405 (1967).Google Scholar
  13. 13.
    V. V. Markov, Point explosion in a detonating gas, in: Nauch. Tr., No. 31, Izd. MGU, Moscow (1974), pp. 93–99.Google Scholar
  14. 14.
    V. P. Korobeinikov, Point explosion in a detonating gas, Dokl. Akad. Nauk SSSR, 177, No. 2, 295–298 (1967).Google Scholar
  15. 15.
    V. P. Korobeinikov, V. A. Levin, V. V. Markov, and G. G. Chernyi, Propagation of blast waves in a combustible gas, Astronautica Acta, 17, Nos. 5–6, 529–537 (1972).Google Scholar
  16. 16.
    V. A. Levin and V. V. Markov, On the initiation of detonation upon concentrated energy input, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5, 89–93 (1974).Google Scholar
  17. 17.
    V. A. Levin and V. V. Markov, Investigation of the initiation of detonation upon concentrated energy input, Fiz. Goreniya Vzryva, 2, No. 4, 623–629 (1975).Google Scholar
  18. 18.
    V. P. Korobeinikov and V. V. Markov, On propagation of combustion and detonation, Archiwum Procesow Spalania, 8, No. 1, 101–118 (1977).Google Scholar
  19. 19.
    L. I. Sedov, V. P. Korobeinikov, and V. V. Markov, The theory of propagation of explosive waves, in: Trudy MIAN SSSR, 225, 178–216 (1986).Google Scholar
  20. 20.
    V. A. Levin, V. V. Markov, and S. F. Osinkin, Initiation of detonation by a piston in a hydrogen–air mixture, Dokl. Akad. Nauk SSSR, 258, No. 2, 288–291 (1981).MathSciNetGoogle Scholar
  21. 21.
    V. A. Levin, V. V. Markov, and S. F. Osinkin, Modeling of electric discharge initiation of detonation in a combustible mixture of gases, Khim. Fiz., 3, No. 4, 611–613 (1984).Google Scholar
  22. 22.
    V. A. Levin, V. V. Markov, and S. F. Osinkin, Initiation of detonation in a hydrogen–air mixture by explosion of a spherical TNT charge, Fiz. Goreniya Vzryva, 31, No. 2, 91–95 (1995).Google Scholar
  23. 23.
    J. H. Lee, Initiation of gaseous detonation, Ann. Rev. Phys. Chem., 28, 75–104 (1977).CrossRefGoogle Scholar
  24. 24.
    V. A. Levin, V. V. Markov, and S. F. Osinkin, Initiation of detonation in an inhomogeneous hydrogen–air mixture, Report of the Institute of Mechanics of the Moscow State University, No. 4376 (1995).Google Scholar
  25. 25.
    V. A. Levin, V. V. Markov, and S. F. Osinkin, Initiation of detonation in a hydrogen–air mixture by a charge of an explosive surrounded by an inert gas layer, Vestn. MGU, Ser. Mat., Mekh., No. 4, 32–34 (1997).Google Scholar
  26. 26.
    V. A. Levin, V. V. Markov, and S. F. Osinkin, Influence of air space on the explosion-induced initiation of detonation in a hydrogen–air mixture, in: Trudy MIAN, 223, 141–148 (1998).Google Scholar
  27. 27.
    V. A. Levin, V. V. Markov, and S. F. Osinkin, Detonation recovery by means of a breaking shell, Dokl. Akad. Nauk SSSR, 352, No. 1, 48–50 (1997).Google Scholar
  28. 28.
    V. A. Levin, V. V. Markov, and S. F. Osinkin, Influence of a breaking shell on the detonation initiation in a hydrogen–air mixture, in: Proc. 11th Symp. on Combustion and Explosion, Vol. 2, Chernogolovka (1998), pp. 169–170.Google Scholar
  29. 29.
    V. A. Levin, V. V. Markov, and S. F. Osinkin, Stabilization of detonation in supersonic flows of combustible gas mixtures, in: Proc. 16th Int. Colloq. on Dynamics of Explosions and Reactive Systems, Poland, Cracow (1997), pp. 529–537.Google Scholar
  30. 30.
    V. A. Levin, V. V. Markov, and T. A. Zhuravskaya, Direct initiation of detonation in hydrogen–air mixtures by decomposition of a low-pressure domain without energy input, in: Proc. 16th Int. Colloq. on Dynamics of Explosions and Reactive Systems, USA, Boston (1998), pp. 529–537.Google Scholar
  31. 31.
    V. A. Levin, V. V. Markov, and T. A. Zhuravskaya, Direct initiation of detonation in a hydrogen–air mixture by a converging shock wave, Khim. Fiz., 20, No. 5, 26–30 (2001).Google Scholar
  32. 32.
    V. A. Levin, V. V. Markov, S. F. Osinkin, and T. A. Zhuravskaya, Determination of the critical conditions of detonation initiation in a confined volume by a shock wave converging to the center, Fiz. Goreniya Vzryva, 38, No. 6, 96–102 (2002).Google Scholar
  33. 33.
    T. A. Zhuravskaya, V. A. Levin, V. V. Markov, and S. F. Osinkin, Influence of the breaking shell on the formation of detonation in a confined volume by a converging shock wave, Khim. Fiz., 22, No. 8, 34–37 (2003).Google Scholar
  34. 34.
    V. V. Markov, Numerical simulation of the formation of the multifront structure of a detonation wave, Dokl. Akad. Nauk SSSR, 258, No. 2, 158–163 (1981).Google Scholar
  35. 35.
    V. A. Levin, V. V. Markov, T. A. Zhuravskaya, and S. F. Osinkin, Nonlinear wave processes in the initiation and propagation of gas detonation, in: Trudy MIAN, 251, 200–214 (2005).Google Scholar
  36. 36.
    V. A. Levin, V. V. Markov, T. A. Zhuravskaya, and S. F. Osinkin, Initiation of gas detonation by electric discharges, in: Pulsed Detonation Engines [in Russian], Moscow (2005), pp. 120–138.Google Scholar
  37. 37.
    V. A. Levin, V. V. Markov, T. A. Zhuravskaya, and S. F. Osinkin, Initiation and propagation of detonation in channels of complex shape, in: G. D. Roy and S. M. Frolov (Eds.), Pulse and Continuous Detonation Propulsion, Torus Press, Moscow (2006), pp. 97–106.Google Scholar
  38. 38.
    V. A. Levin, V. V. Markov, T. A. Zhuravskaya, and S. F. Osinkin, Determination of the critical conditions for propagation of detonation waves in channels of complex shape, in: O. M. Belotserkovskii (Ed.), Current Problems of Investigation of Fast Processes and Phenomena of Catastrophic Character [in Russian], Nauka, Moscow (2007), pp. 75–88.Google Scholar
  39. 39.
    V. A. Levin, V. V. Markov, T. A. Zhuravskaya, and S. F. Osinkin, Influence of obstacles on detonation wave propagation, in: G. Roy and S. Frolov (Eds.), Deflagrative and Detonative Combustion, Torus Press, Moscow (2010), pp. 221–228.Google Scholar
  40. 40.
    V. A. Levin, V. V. Markov, T. A. Zhuravskaya, and S. F. Osinkin, Initiation, propagation and stabilization of detonation waves in the supersonic flow, in: Problems of Modern Mechanics, Omega-L Publishers, Moscow State University, Moscow (2008), pp. 240–259.Google Scholar
  41. 41.
    V. Levin, V. Markov, T. Zhuravskaya, and S. Osinkin, Initiation, propagation and stabilization of detonation in the supersonic gas flow, in: Proc. Seventh Int. Symp. on Hazards, Prevention, and Migration of Industrial Explosions (ISHPMIE), St. Petersburg, Russia, 7–11 July, 2008, Vol. 2, (2008), pp. 110–118.Google Scholar
  42. 42.
    C. K. Westbrook and F. L. Dryer, Chemical kinetic modeling of hydrocarbon combustion, in: Proc. Energy Combust. Sci., 10, 1–57 (1984).Google Scholar
  43. 43.
    S. K. Gorbachev, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, and G. P. Prokopov, Numerical Solution of Multidimensional Problems of Gas Dynamics [in Russian], Nauka, Moscow (1976).Google Scholar
  44. 44.
    V. V. Mitrofanov and S. A. Zhdan, Thrust characteristics of an ideal pulsating detonation engine, Fiz. Goreniya Vzryva, 40, No. 4, 380–385 (2004).Google Scholar
  45. 45.
    L. I. Sedov, Similarity and Dimensionality Methods in Mechanics [in Russian], Nauka, Moscow (1977).Google Scholar
  46. 46.
    G. G. Chernyi, Unsteady flow of gases in channels. Stability of a breakdown shock wave, in: Transactions of the P. I. Baranov Central Scientific-Research Institute of Aircraft Engines, No. 244 (1953).Google Scholar
  47. 47.
    V. T. Grin’, A. N. Kraiko, and N. I. Tillyaeva, Steadiness of the ideal gas flow in a quasi-cylindrical channel, Prikl. Mat. Mekh., 39, Issue 3, 473–484 (1975).Google Scholar
  48. 48.
    V. T. Grin’, A. N. Kraiko, and N. I. Tillyaeva, Steadiness of the flow in a channel upon reflection of acoustic and entropy waves from the outlet cross section, Prikl. Mat. Mekh., 40, Issue 3, 469–478 (1976).Google Scholar
  49. 49.
    A. A. Vasil’ev and D. V. Zak, Detonation of gas jets, Fiz. Goreniya Vzryva, 22, No. 4, 82–88 (1986).Google Scholar
  50. 50.
    H. F. Lehr, Experimente zur stossinduzierten Verbrenung in Wasserstoff Luft und Wasserstoff-Gemischen, Inst. Fllemand Rech. Saint Lous Rapp., Vol. 20/71, Berlin (1971).Google Scholar
  51. 51.
    G. G. Chernyi and S. Yu. Chernyavskii, Motion of blunt bodies with a high velocity in a hydrogen–oxygen mixture, Dokl. Akad. Nauk SSSR, 212, No. 2, 316–319 (1973).Google Scholar
  52. 52.
    V. V. Mitrofanov, The Theory of Detonation [in Russian], NGU, Novosibirsk (1982).Google Scholar
  53. 53.
    I. V. Semenov, P. S. Utkin, and V. V. Markov, Numerical simulation of two-dimensional detonation flows on multiprocessor computers, Vych. Met. Programmir., 9, No. 1, 123–132 (2008).Google Scholar
  54. 54.
    I. V. Semenov, P. S. Utkin, and V. V. Markov, Numerical simulation of the initiation of detonation in tubes, Fiz. Goreniya Vzryva, 45, No. 6, 73–81 (2009).Google Scholar
  55. 55.
    A. A. Il’yushin, Law of plane sections in the aerodynamics of high supersonic velocities, Prikl. Mat. Mekh., 20, Issue 6, 733–755 (1956).Google Scholar
  56. 56.
    G. G. Chernyi, Gas Flow with a High Supersonic Velocity [in Russian], Fizmatgiz, Moscow (1959).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  • V. A. Levin
    • 1
  • I. S. Manuilovich
    • 1
  • V. V. Markov
    • 1
  1. 1.Scientific-Research Institute of Mechanics, Moscow State UniversityMoscowRussia

Personalised recommendations