Advertisement

Journal of Engineering Physics and Thermophysics

, Volume 83, Issue 5, pp 929–933 | Cite as

Thermal crisis in the flow field of a cylindrical or spherical source

  • A. N. Kucherov
Hydrogasdynamics in Technological Processes

Variants of the physical phenomenon of thermal crisis in the field of a stationary cylindrical source and a spherical source have been compared in the approximation of an ideal, perfect gas within the framework of Euler equations.

Keywords

gas source sink energy supply density pressure velocity Mach number flow choking thermal crisis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. G. Chernyi, Gas Dynamics [in Russian], Nauka, Moscow (1988).Google Scholar
  2. 2.
    G. N. Abramovich, On thermal crisis in gas flow, Dokl. Akad. Nauk SSSR, 54, No. 7, 579–581 (1946).Google Scholar
  3. 3.
    L. A. Vulis, On passage through the velocity of sound in gas flow, Dokl. Akad. Nauk SSSR, 54, No. 8, 669–672 (1946).Google Scholar
  4. 4.
    S. A. Chaplygin, On Gas Jets [in Russian], Universitetskaya Tipografiya (1902); GITTL, Moscow (1949); Selected Works on Mechanics and Mathematics [in Russian], GITTL, Moscow (1954).Google Scholar
  5. 5.
    N. Ya. Fabrikant, Aerodynamics [in Russian], Pt. 1, Moscow (1949); Aerodynamics, General Course [in Russian], Nauka, Moscow (1964).Google Scholar
  6. 6.
    R. Mises, Mathematical Theory of Compressible Fluid Flow, Academic Press, New York (1958).MATHGoogle Scholar
  7. 7.
    Yu. P. Raizer, Physics of Gas Discharge [in Russian], Nauka, Moscow (1994).Google Scholar
  8. 8.
    A. P. Ershov, O. S. Surkont, I. B. Timofeev, V. M. Shibkov, and V. A. Chernikov, Transverse electric discharges in supersonic air flows. Mechanisms of propagation and instability of discharge, Teplofiz. Vys. Temp., 42, No. 4, 516–522 (2004).Google Scholar
  9. 9.
    P. K. Tret’yakov, G. N. Grachev, A. I. Ivanchenko, V. L. Krainev, A. G. Ponomarenko, and V. N. Tishchenko, Stabilization of optical discharge in a supersonic argon flow, Dokl. Ross. Akad. Nauk, 336, No. 4, 466–467 (1994).Google Scholar
  10. 10.
    P. K. Tret’yakov, G. F. Garanin, G. N. Grachev, V. L. Krainev, A. G. Ponomarenko, V. N. Tishchenko, and V. I. Yakovlev, Control of supersonic flow past bodies using a high-power optical pulsating discharge, Dokl. Ross. Akad. Nauk, 351, No. 3, 339–340 (1996).Google Scholar
  11. 11.
    V. N. Zudov, P. K. Tret’yakov, A. V. Tupikin, and V. I. Yakovlev, Supersonic flow past a heat source, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 5, 140–153 (2003).Google Scholar
  12. 12.
    V. G. Gromov, A. P. Ershov, V. A. Levin, and V. M. Shibkov, Transverse electric discharges in supersonic air flows. Modeling of the effects exerting their influence on gas heating, Teplofiz. Vys. Temp., 44, No. 2, 185–194 (2006).Google Scholar
  13. 13.
    P. Yu. Georgievskii and V. A. Levin, Control of flow past various bodies with the aid of localized supply of energy into a supersonic incoming flow, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 5, 140–152 (2003).Google Scholar
  14. 14.
    A. N. Kucherov, Some problems of gas flows with assigned distributed heat sources, Uch. Zap. TsAGI, 40, No. 4, 4–14 (2009).Google Scholar
  15. 15.
    A. N. Kucherov, Vortex source, a source and vortex with distributed heat supply, Uch. Zap. TsAGI, 14, No. 4, 47–57 (1983).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  1. 1.N. E. Zhukovskii Central Aerohydrodynamic InstituteZhukovskiiRussia

Personalised recommendations