Advertisement

Journal of Engineering Physics and Thermophysics

, Volume 83, Issue 5, pp 922–928 | Cite as

Computational schemes for the processes of convective-diffusion transport of water-soluble compounds

  • G. P. Brovka
  • I. N. Dorozhok
  • S. N. Ivanov
Article
  • 33 Downloads

We have developed and tested computational schemes for a one-dimensional equation of convective-diffusion transport of water-soluble compounds providing results satisfactory for practical purposes for various forms of the initial concentration profile and relations between the convective-diffusion transport parameters.

Keywords

convection diffusion water-soluble compounds computational scheme numerical dispersion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Kosov, D. F. Shul’gin, V. E. Klykov, and V. K. Ivanov, Mathematical Simulation of Natural Ecosystems [in Russian], TGTU, Tver’ (1998).Google Scholar
  2. 2.
    J. Bear, Some experiments in dispersion, Groph. Res., 66, 2455 (1966).CrossRefGoogle Scholar
  3. 3.
    Yu. A. Kokotov and V. A. Pasechnik, Equilibrium and Kinetics of Ion Exchange [in Russian], Khimiya, Leningrad (1970).Google Scholar
  4. 4.
    M. P. Galanin and T. G. Elenina, Comparative Analysis of the Difference Schemes for the Linear Transfer Equation, Preprint No. 52 of the M. V. Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow (1998).Google Scholar
  5. 5.
    M. P. Galanin and T. G. Elenina, Nonlinear Monotonization of the Difference Schemes for the Linear Transfer Equation, Preprint No. 44 of the M. V. Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow (1999).Google Scholar
  6. 6.
    T. A. Aleksandrova and M. P. Galanin, Nonlinear Monotonization of the K. I. Babenko Scheme for the Numerical Solution of the Quasi-Linear Transfer Equation, Preprint No. 62 of the M. V. Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow (2003).Google Scholar
  7. 7.
    A. A. Samarskii, Theory of Difference Schemes [in Russian], Nauka, Moscow (1977).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  1. 1.Nature Management Institute, National Academy of Sciences of BelarusMinskBelarus

Personalised recommendations