Journal of Engineering Physics and Thermophysics

, Volume 83, Issue 4, pp 679–687 | Cite as

Condensation from a vapor-gas mixture

  • A. P. Kryukov
  • V. Yu. Levashov
  • N. V. Pavlyukevich

A review of the possible approaches to calculation of vapor condensation from a binary vapor-gas mixture on a surface is presented. Emphasis is paid to justification of the application of molecular-kinetic theory methods for calculation of applied problems. Quantitative estimates for the parameters of the existence in principle of the regimes of one-dimensional stationary condensation are given.


molecular-kinetic theory condensation vapor-gas mixture noncondensable gas diffusion Boltzmann equation condensation choking 


  1. 1.
    A. V. Luikov, Theory of Drying [in Russian], Énergiya, Moscow (1968).Google Scholar
  2. 2.
    A. V. Luikov, T. L. Perelman, V. V. Levdansky, V. G. Leitsina, and N. V. Pavlyukevich, Theoretical investigation of vapour transfer through a capillary-porous body, Int. J. Heat Mass Transfer, 17, 961–970 (1974).MATHCrossRefGoogle Scholar
  3. 3.
    W. J. Minkowycz and E. M. Sparrow, Condensation heat transfer in presence of noncondensables, interfacial resistance, superheating, variable properties and diffusion, Int. J. Heat Mass Transfer, 9, 1125–1144 (1966).CrossRefGoogle Scholar
  4. 4.
    K. Aoki, S. Takata, and S. Kosuge, Vapor flows caused by evaporation and condensation on two parallel plane surfaces: Effect of the presence of a noncondensable gas, Phys. Fluids, 10, No. 6, 1519–1533 (1998).CrossRefGoogle Scholar
  5. 5.
    S. Taguchi, K. Aoki, and S. Takata, Vapor flows condensing at incidence onto a plane condensed phase in the presence of noncondensable gas. I. Subsonic condensation, Phys. Fluids, 15, No. 3, 689–705 (2003).CrossRefGoogle Scholar
  6. 6.
    A. P. Kryukov and V. Yu. Levashov, Condensation from a vapor-gas mixture on a plane surface, Teplofiz. Vys. Temp., 46, No. 5, 765–770 (2008).Google Scholar
  7. 7.
    C. Panzarella and M. Kassemi, One-dimensional model of evaporation and condensation in the presence of a noncondensable gas with applications to cryogenic fluid storage, Int. J. Heat Mass Transfer, 52, 3767–3777 (2009).CrossRefGoogle Scholar
  8. 8.
    D. G. Kroger and W. M. Rohsenow, Condensation heat transfer in the presence of non-condensable gas, Int. J. Heat Mass Transfer, 11, 15–26 (1968).CrossRefGoogle Scholar
  9. 9.
    A. I. Leontiev, Engineering methods for calculation of friction and heat transfer on a permeable surface, Teploénergetika, No. 9, 19–24 (1972).Google Scholar
  10. 10.
    D. Butterworth and G. Hewitt (Eds.), Two-Phase Flow and Heat Transfer [Russian translation], Énergiya, Moscow (1980).Google Scholar
  11. 11.
    V. P. Isachenko, Heat Transfer in Condensation [in Russian], Énergiya, Moscow (1977).Google Scholar
  12. 12.
    M. K. Groff, S. J. Ormiston, and H. M. Soliman, Analysis of laminar film condensation from vapour-gas mixtures in vertical tubes, Proc. 3rd Int. Symp. on Two-Phase Flow Modelling and Experimentation, 22–24 September, 2004, Pisa, Vol. II, pp. 1193–1200.Google Scholar
  13. 13.
    S. I. Isaev, I. A. Kozhinov, V. I. Kofanov, et al. (A. I. Leontiev Ed.), Heat and Mass Transfer Theory: Textbook for Technical Universities and Higher Educational Establishments [in Russian], 2nd ed., MGTU im. N. É. Baumana, Moscow (1997).Google Scholar
  14. 14.
    Seungmin Oh and Shripad T. Revankar, Experimental and theoretical investigation of film condensation with noncondensable gas, Int. J. Heat Mass Transfer, Vol. 49, 2523–2534 (2006).CrossRefGoogle Scholar
  15. 15.
    J. C. de la Rosa, A. Escriva, L. E. Herranz, T. Cicero, and J. L. Munoz-Cobo, Review of condensation on containment structures, Prog. Nucl. Energ., 51, 32–66 (2009).CrossRefGoogle Scholar
  16. 16.
    S. T. Revankar and D. Pollock, Laminar film condensation in a vertical tube in the presence of noncondensable gas, Appl. Math. Model., 29, 341–359 (2005).MATHCrossRefGoogle Scholar
  17. 17.
    N. K. Maheshwari, D. Saha, R. K. Sinha, and M. Aritomi, Investigation of condensation in the presence of a noncondensable gas for a wide range of Reynolds number, Nucl. Eng. Des., 227, 219–238 (2004).CrossRefGoogle Scholar
  18. 18.
    A. P. Kryukov, V. Yu. Levashov, and I. N. Shishkova, Recondensation in the presence of a noncondensable component, Inzh.-Fiz. Zh., 78, No. 4, 15–21 (2005).Google Scholar
  19. 19.
    Rao V. Dharma, Murali V. Krishna, K. V. Sharma, and P. V. J. Mohana Rao, Convective condensation of vapor in the presence of a non-condensable gas of high concentration in laminar flow in a vertical pipe, Int. J. Heat Mass Transfer, 51, 6090–6101 (2008).MATHCrossRefGoogle Scholar
  20. 20.
    N. V. Pavlyukevich, V. G. Leitsina, and G. E. Gorelik, Calculating the interphase resistance in condensation of pure saturated vapors, Inzh.-Fiz. Zh., 16, No. 4, 700–706 (1969).Google Scholar
  21. 21.
    V. V. Levdanskii, V. G. Leitsina, and N. V. Pavlyukevich, Kinetic model of gas flow in a porous body, Inzh.-Fiz. Zh., 46, No. 6, 905–912 (1984).Google Scholar
  22. 22.
    S. Stefanov, A. Frezzotti, V. Levdansky, V. Leitsina, and N. Pavlyukevich, Direct statistical simulation of gas mixture mass transfer in a porous layer with condensation of one of the components and absorption of another, Int. J. Heat Mass Transfer, 42, 2063–2069 (1999).MATHCrossRefGoogle Scholar
  23. 23.
    V. K. Kulikovskii, N. V. Pavlyukevich, and L. L. Vasil’ev, Modeling of mass transfer between the evaporator and condenser in a drying chamber, in: Proc. 3rd Int. Sci.-Pract. Conf. "Modern Energy-Saving Thermal Technologies–METT-2008," Moscow (2008), Vol. 2, pp. 36–42.Google Scholar
  24. 24.
    A. P. Kryukov, O. Podcherniaev, P. H. Hall, D. J. Plumley, V. Yu. Levashov, and I. N. Shishkova, Selective water vapor cryopumping through argon, J. Vac. Sci. Technol. A: Vacuum, Surf., Films, 24, No. 4, 1592–1596 (2006).CrossRefGoogle Scholar
  25. 25.
    M. N. Kogan, Rarefied Gas Dynamics [in Russian], Nauka, Moscow (1967).Google Scholar
  26. 26.
    M. N. Kogan and N. K. Makashev, On the role of the Knudsen layer in the theory of heterogeneous reactions and in flows with surface reactions, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 6, 3–11 (1971).Google Scholar
  27. 27.
    D. A. Labuntsov and A. P. Kryukov, Analysis of intensive evaporation and condensation, Int. J. Heat Mass Transfer, 22, 989–1002 (1979).MATHCrossRefGoogle Scholar
  28. 28.
    A. A. Abramov and M. N. Kogan, Concerning the regime of supersonic condensation, Izv. Akad. Nauk SSSR, 278, No. 5, 1078–1081 (1984).Google Scholar
  29. 29.
    A. P. Kryukov, One-dimensional stationary condensation at vapor velocities commensurable with the speed of sound, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 3, 176–180 (1985).Google Scholar
  30. 30.
    Y. Sone, K. Aoki, H. Sugimoto, and T. Yamada, Steady evaporation and condensation in plane condensation phase, Theor. Appl. Mech. (Bulgaria), 1, 89–93 (1988).Google Scholar
  31. 31.
    R. Ya. Kucherov and L. É. Rikenglaz, Concentration jump in slow evaporation of a mixture, Zh. Éksp. Teor. Fiz., 37, No. 12, 1821–1822 (1959).Google Scholar
  32. 32.
    T. Matsushita, Evaporation and condensation in vapor-gas mixture, in: J. L. Potter (Ed.), Rarefied Gas Dynamics, AIAA, New York (1977), Vol. 51, Pt. II, P. 1213.Google Scholar
  33. 33.
    T. Soga, Kinetic analysis of evaporation and condensation in a vapor-gas mixture, Phys. Fluids, 25, 1978 (1982).MATHCrossRefGoogle Scholar
  34. 34.
    L. Pong and G. A. Moses, Vapor condensation in the presence of a noncondensable gas, Phys. Fluids, 29, No. 6, 1796–1804 (1986).MATHCrossRefGoogle Scholar
  35. 35.
    T. M. Muratova, Influence of boundary kinetic effects on condensation from a vapor-gas mixture, Izv. Akad. Nauk SSSR, Énergetika Transport, No. 6, 140–144 (1980).Google Scholar
  36. 36.
    R. W. Schrage, A Theoretical Study of Interface Mass Transfer, Columbia University Press, New York (1953).Google Scholar
  37. 37.
    V. Garzo, A. Santos, and J. J. Brey, A kinetic model for a multicomponent gas, Phys. Fluids A, 1, 380–383 (1989).MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  • A. P. Kryukov
    • 1
  • V. Yu. Levashov
    • 1
  • N. V. Pavlyukevich
    • 2
  1. 1.Moscow Power Engineering Institute (Technical University)MoscowRussia
  2. 2.A. V. Luikov Heat and Mass Transfer InstituteNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations