On localization of contact surfaces in multifluid hydrodynamics

  • V. S. Surov

Within the framework of the unified-equilibrium model of a multicomponent mixture that accounts for the forces of interfractional interaction, the problem of localization of contact surfaces is solved numerically in Euler variables. A finite-volume conservative scheme with the approximate Riemann solver HLLC was used in the calculations.


single-velocity multicomponent medium contact boundaries approximate Riemann solver HLLC numerical simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Glimm, J. Grove, X. Li, and D. Tan, Robust computational algorithms for dynamic interface tracking in three dimensions, SIAM J. Sci. Comput., 21, No. 6, 2240–2276 (2000).MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    R. Scardovelli and S. Zaleski, Direct numerical simulation of free-surface and interfacial flow, Annu. Rev. Fluid Mech., 31, 567–598 (1999).CrossRefMathSciNetGoogle Scholar
  3. 3.
    S. Osher and R. P. Fedkiw, A level set method: An overview and some recent results, J. Comput. Phys., 169, 463–502 (2001).MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    S. M. Bakhrakh, Yu. P. Glagoleva, M. S. Samigulin, et al., Calculation of gasdynamic flows based on the method of concentrations, Dokl. Akad. Nauk SSSR, 257, No. 3, 566–569 (1981).Google Scholar
  5. 5.
    Yu. A. Bondarenko and Yu. V. Yanilkin, Calculation of the thermodynamic parameters of mixed cells in gas dynamics, Mat. Modelir., 15, No. 6, 63–81 (2002).Google Scholar
  6. 6.
    R. Abgrall and S. Karni, Computations of compressible multifluids, J. Comput. Phys., 169, 594–623 (2001).MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Keh-Ming Shyue, A fluid-mixture type algorithm for compressible multicomponent flow with Van der Waals equation of state, J. Comput. Phys., 156, 43–88 (1999).MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Keh-Ming Shyue, A fluid-mixture type algorithm for compressible multicomponent flow with Mie–Gruneisen equation of state, J. Comput. Phys., 171, 678–707 (2001).MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    I. É. Ivanov and I. A. Kryukov, Numerical simulation of flows of a multicomponent gas with strong discontinuities of the mixture properties, Mat. Modelir., 19, No. 12, 89–100 (2007).MathSciNetGoogle Scholar
  10. 10.
    G. Allaire, S. Clerc, and S. Kokh, A five-equation model for the simulation of interfaces between compressible fluids, J. Comput. Phys., 181, 577–616 (2002).MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    A. Murrone and H. Guillard, A five-equation reduced model for compressible two-phase flow problems, J. Comput. Phys., 202, 664–698 (2005).MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    V. S. Surov, Single-velocity model of a heterogeneous medium with a hyperbolic adiabatic core, Zh. Vych. Mat. Mat. Fiz., 48, No. 6, 1111–1125 (2008).MATHGoogle Scholar
  13. 13.
    A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Problems of Numerical Solution of Hyperbolic Systems of Equations [in Russian], Fizmatlit, Moscow (2001).Google Scholar
  14. 14.
    V. S. Surov, Concerning a means of approximate solution of the Riemann problem for a single-velocity multicomponent mixture, Inzh.-Fiz. Zh., 83, No. 2, 351–356 (2010).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  1. 1.South Urals State UniversityChelyabinskRussia

Personalised recommendations