Conjugate heat transfer in a rotating disc with holes

  • K. N. Volkov

Problems connected with the simulation of conjugate heat transfer in the flow of a viscous compressible fluid past a rotating disc with holes are considered. The discretization of the equations describing the temperature distribution inside a solid body and the fluid flow characteristics, the construction of computational meshes, and the control of the integration time step are considered. The results of the calculations of the metal temperature at control points of the model and the heat transfer coefficient distribution over its boundaries are presented.


conjugate heat transfer rotating disc numerical simulation turbulence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Bohn, U. Kruger, and K. Kusterer, Conjugate heat transfer: an advanced computational method for the cooling design of modern gas turbine blades and vanes, in: Heat Transfer in Gas Turbine, WIT Press, Southampton (2001), pp. 58–108.Google Scholar
  2. 2.
    D. L. Rigby and J. Lepicovsky, Conjugate heat transfer analysis of internally cooled configurations, ASME Paper, No. 2001-GT-0405 (2001).Google Scholar
  3. 3.
    Y. Okita and S. Yamawaki, Conjugate heat transfer analysis of turbine rotor–stator systems, ASME Paper, No. 2002-GT-30615 (2002).Google Scholar
  4. 4.
    D. Bohn, J. Ren, and K. Kusterer, Conjugate heat transfer analysis for film cooling configurations with different hole geometries, ASME Paper, No. 2003-GT-38369 (2003).Google Scholar
  5. 5.
    K. Kusterer, D. Bohn, T. Sugimoto, and R. Tanaka, Conjugate calculations for a film-cooled blade under different operating conditions, ASME Paper, No. 2004-GT-53719 (2004).Google Scholar
  6. 6.
    L. V. Lewis and J. I. Provins, A non-coupled CFD–FE procedure to evaluate windage and heat transfer in rotor–stator cavities, ASME Paper, No. GT2004-53246 (2004).Google Scholar
  7. 7.
    K. Saunders, S. Alizadeh, L. V. Lewis, and J. Provins, The use of CFD to generate heat transfer boundary conditions for a rotor–stator cavity in a compressor drum thermal model, ASME Paper, No. GT2007-28333 (2007).Google Scholar
  8. 8.
    H. Li and A. J. Kassab, A Coupled FVM/BEM approach to conjugate heat transfer in turbine blades, AIAA Paper, No. 94-1981 (1994).Google Scholar
  9. 9.
    J. A. Verdicchio, J. W. Chew, and N. J. Hills, Coupled fluid/solid heat transfer computation for turbine discs, ASME Paper, No. 2001-GT-0123 (2001).Google Scholar
  10. 10.
    A. V. Mirzamoghadam and Z. Xiao, Flow and heat transfer in an industrial rotor-stator rim sealing cavity, J. of Eng. for Gas Turbines and Power, 124, No. 1, 125–132 (2002).CrossRefGoogle Scholar
  11. 11.
    J. Illingworth, N. Hills, and C. Barnes, 3D fluid-solid heat transfer coupling of an aero-engine preswirl system, ASME Paper, No. 2005-GT-68939 (2005).Google Scholar
  12. 12.
    K. N. Volkov, Solution of conjugate heat transfer problems and transfer of thermal loads between a fluid and a solid body, Vych. Metody Programmir., 8, No. 1, 265–274 (2007).Google Scholar
  13. 13.
    Z. Sun, J. W. Chew, N. J. Hills, K. N. Volkov, and C. J. Barnes, Efficient FEA/CFD thermal coupling for engineering applications, ASME Paper, No. GT2008-50638 (2008).Google Scholar
  14. 14.
    O. C. Zienkiewicz, The Finite Element Method in Engineering Science, McGraw-Hill, New York (1977).Google Scholar
  15. 15.
    K. N. Volkov, Use of the control volume method for solving problems of the fluid and gas mechanics of on nonstructured grids, Vych. Metody Programmir., 6, No. 1, 43–60 (2005).Google Scholar
  16. 16.
    A. Northrop and J. W. Owen, Heat transfer measurements in rotating disc systems — the free disc, Int. J. Heat Fluid Flow, 9, No. 1, 19–26 (1988).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  1. 1.University of Surrey GuildfordSurreyGreat Britain

Personalised recommendations