Extraction from a porous body in the presence of periodic fluid flow on it

  • A. I. Moshinskii
Heat and Mass Transfer in Porous and Dispersion Media

This paper considers the nonstationary process of extraction from a solid body modeled by a system of semiinfinite capillaries connected with a group of no-flow channels when the mass transfer velocity in the flow is composed of two components — a constant velocity component and a time-periodic addition to the first one that is assumed to be small relative to the amplitude. We have obtained analytical dependences for the masstransfer characteristics that are of practical interest: the concentration and the diffusion flow for both the main approximation and with correction for the periodic action on the system.


two-component model mass transfer periodicity porous body extraction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. A. Aksel’rud and V. M. Lysyanskii, Extraction. Solid Body–Liquid System [in Russian], Khimiya, Leningrad (1974).Google Scholar
  2. 2.
    G. A. Aksel’rud and M. A. Al’tshuler, Introduction to Capillary-Chemical Technology [in Russian], Khimiya, Moscow (1983).Google Scholar
  3. 3.
    D. Tondeur, Le lavage des gâteaux de filtration, Chim. Ind. Gén. Chim., 103, No. 21, 2799–2808 (1970).Google Scholar
  4. 4.
    Yu. A. Buevich, Yu. A. Korneev, and I. N. Shchelchkova, On the heat or mass transfer in a dispersed flow, Inzh.-Fiz. Zh., 30, No. 6, 979–985 (1976).Google Scholar
  5. 5.
    A. I. Moshinskii, Description of mass-exchange processes in porous media at low values of the Peclet number, Inzh.-Fiz. Zh., 51,No. 1, 92–98 (1986).Google Scholar
  6. 6.
    Yu. A. Buevich, On the theory of transport in heterogeneous media, Inzh.-Fiz. Zh., 54, No. 5, 770–779 (1988).Google Scholar
  7. 7.
    Yu. A. Buevich, Problems of transfer in disperse media, in: Proc. 1st Minsk Int. Forum "Heat and Mass Transfer–MIF-1988" [in Russian], May 24–27, 1988, Keynote Papers. Sections 4 and 5, Minsk (1988), pp. 100–114.Google Scholar
  8. 8.
    Yu. I. Babenko and E. V. Ivanov, Mathematical model of extraction from a body having a bidisperse porous structure, Teor. Osnovy Khim. Tekhnol., 39, No. 6, 644–650 (2005).Google Scholar
  9. 9.
    A. I. Moshinskii, Mathematical model of mass transfer in the case of a bidisperse porous material, Inzh.-Fiz. Zh., 82, No. 2, 258–272 (2009).Google Scholar
  10. 10.
    Yu. I. Babenko and E. V. Ivanov, Extraction into a flowing velocity-gradient liquid, Teor. Osnovy Khim. Tekhnol., 42, No. 5, 504–508 (2008).Google Scholar
  11. 11.
    A. A. Dolinskii, Use of the principle of discrete pulsed energy input for developing efficient energy-saving technologies, Inzh.-Fiz. Zh., 69, No. 6, 885–896 (1996).Google Scholar
  12. 12.
    A. I. Moshinskii and E. V. Ivanov, Fluid filtration in a porous particle under the action of pressure pulses on local portions of its surface, Teor. Osnovy Khim. Tekhnol., 42, No. 2, 160–169 (2008).Google Scholar
  13. 13.
    R. M. Abiev and G. M. Ostrovskii, Modeling of the process of extraction from a capillary-porous particle having a bidisperse structure, Teor. Osnovy Khim. Tekhnol., 35, No. 3, 270–275 (2001).Google Scholar
  14. 14.
    R. M. Malyshev, A. M. Kutepov, A. N. Zolotnikov, et al., Influence of the imposition of the field of low-frequency oscillations on the extraction efficiency and mathematical model of the process, Dokl. Ross. Akad. Nauk, 381, No. 6, 800–805 (2001).MATHGoogle Scholar
  15. 15.
    R. I. Nigmatulin, Principles of the Mechanics of Heterogeneous Media [in Russian], Nauka, Moscow (1978).Google Scholar
  16. 16.
    E. S. Romm, Structural Models of the Porous Space of Rocks [in Russian], Nedra, Leningrad (1985).Google Scholar
  17. 17.
    Yu. A. Kokotov, P. P. Zolotarev, and G. E. El’kin, Theoretical Principles of Ion Exchange. Complex Ion Exchange Systems [in Russian], Khimiya, Leningrad (1986).Google Scholar
  18. 18.
    Yu. I. Babenko and E. V. Ivanov, Extraction of a dissolved substance from a porous body into a flowing liquid, Teor. Osnovy Khim. Tekhnol., 41, No. 2, 225–227 (2007).Google Scholar
  19. 19.
    A. I. Moshinskii, On the heat dispersion in a fluid flow in the heat exchange with the wall, Teplofiz. Vys. Temp., 30, No. 6, 1118–1123 (1992).Google Scholar
  20. 20.
    L. G. Loitsyanskii, Fluid Mechanics [in Russian], Nauka, Moscow (1973).Google Scholar
  21. 21.
    G. I. Barenblatt, Similarity, Self-Similarity, Intermediate Asymptotics [in Russian], 2nd rev. and augm. ed., Gidrometeoizdat, Leningrad (1982).Google Scholar
  22. 22.
    A. H. Nayfeh, Perturbation Techniques [Russian translation], Mir, Moscow (1976).Google Scholar
  23. 23.
    M. A. Lavrent’ev and B. V. Shabat, Methods of the Theory of Functions of a Complex Variable [in Russian], Nauka, Moscow (1973).Google Scholar
  24. 24.
    G. Doech, Introduction to the Theory and Application of Laplace and Z Transforms [Russian translation], Nauka, Moscow (1971).Google Scholar
  25. 25.
    N. N. Lebedev, Special Functions and Their Applications [in Russian], Fizmatgiz, Moscow (1963).Google Scholar
  26. 26.
    M. V. Fedoryuk, Asymptotics: Integrals and Series [in Russian], Nauka, Moscow (1987).MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  • A. I. Moshinskii
    • 1
  1. 1.St. Petersburg Chemico-Pharmaceutical AcademySt. PetersburgRussia

Personalised recommendations