Skip to main content
Log in

Estimation of kinetic parameters of composite materials during the cure process using the combined wavelet regularization method

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The limitation of the experimental methods in thermophysical characterization of composite materials leads to an increased use of inverse parameter estimation techniques. However, in some situations the convergence of the inverse algorithm is impossible due to the correlation of the involved parameters and the existing noises in measurement data. Several different approaches have been used to tackle this problem. In this article, a new approach is utilized to solve it. This new technique combines the wavelet denoising and Levenberg–Marquardt regularization method. In order to examine this technique, a highly ill-posed problem is considered as a test case, that is, the estimation of the composite kinetic parameters during the cure process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. V. Beck, Transient determination of thermal properties, Nucl. Eng. Des., 3, 373–381 (1966).

    Article  Google Scholar 

  2. E. P. Scott and J. V. Beck, Estimation of thermal properties in epoxy matrix/carbon fiber composite materials, J. Compos. Mater., 26, No. 1, 132–149 (1992).

    Article  Google Scholar 

  3. E. P. Scott and J. V. Beck, Estimation of thermal properties in carbon/epoxy composite materials during curing, J. Compos. Mater., 26, No. 1, 20–36 (1992).

    Article  Google Scholar 

  4. B. Garnier, D. Delaunay, and J. V. Beck, Estimation of thermal properties of composite materials without instrumentation inside the samples, Int. J. Thermophys., 13, No. 6, 1097–1111 (1992).

    Article  Google Scholar 

  5. T. Jurkowski, Y. Jarny, and D. Delaunay, Simultaneous identification of thermal conductivity and thermal contact resistance without internal temperature measurements, Inst. Chem. Eng. Symp. Ser., 2, No. 129, 1205–1211 (1992).

    Google Scholar 

  6. J. P. Hanak, Experimental Verification of Optimal Experimental Designs for the Estimation of Thermal Properties of Composite Materials, M.S. Thesis, Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA (1995).

  7. M. H. Loh and J. V. Beck, Simultaneous estimation of two thermal conductivity components from transient two-dimensional experiments, ASME Paper, No. 91-WA/HT-11 (1991).

  8. K. A. Woodbury (Ed.), Inverse Engineering Handbook, CRC Press, Boca Raton (2003).

    MATH  Google Scholar 

  9. M. N. Ozisik and H. R. B. Orlande, Inverse Heat Transfer Fundamentals and Applications, Taylor & Francis, New York (2000).

    Google Scholar 

  10. N. Al-Khalidy, On the solution of parabolic and hyperbolic inverse heat conduction problems, Int. J. Heat Mass Transfer, 41, 3731–3740 (1998).

    Article  MATH  Google Scholar 

  11. J. V. Beck, B. Blackwell, and C. R. Clair, Inverse Heat Conduction, Wiley, New York (1985).

    MATH  Google Scholar 

  12. R. E. Kalman, A new approach to linear filtering and prediction problems, Trans. ASME, J. Basic Eng., 82D, 35–45 (1960).

    Google Scholar 

  13. C. Ji and H. Jang, Experimental investigation in inverse heat conduction problem, Numer. Heat Transfer, Part A, 34, 75–91 (1998).

    Article  Google Scholar 

  14. P. Tuan, C. Ji, L. Fong, and W. Huang, An input estimation to on-line two-dimensional inverse heat conduction problems, Numer. Heat Transfer, Part B, 29, 345–363 (1996).

    Article  Google Scholar 

  15. G. Strang and T. Nguyen, Wavelets and Filter Banks, Wellesley-Cambridge Press (1996).

  16. H. Ahmadi Noubari, A. Pourshaghaghy, F. Kowsary, and A. Hakkaki-Fard, Wavelet application for reduction of measurement noise effects in inverse heat transfer problems, Int. J. Numer. Meth. Heat Fluid Flow, 18, No. 2, 217–236 (2008).

    Article  MATH  Google Scholar 

  17. A. C. Loos and G. S. Springer, Curing of graphite/epoxy composites, Air Force Materials Laboratory Report AFWAL-TR-83-4040 (1983).

  18. G. P. Piloyan, I. D. Ryabchikov, and O. S. Novikova, Determination of activation energies of chemical reactions by differential thermal analysis, Nature, 212, 1229 (1966).

    Article  Google Scholar 

  19. Y. Jarny, D. Delaunay, and J. S. Le Brizaut, Inverse Analysis of the Elastomer Cure Control of the Vulcanization Degree, ISITEM/LTI, Universite de Nantes (1993).

  20. D. A. Tortorelli and P. Michaleris, Design sensitivity analysis: Overview and review, Inverse Probl. Eng., 1, 71–105 (1994).

    Article  Google Scholar 

  21. T. A. Bogetti and J. W. Gillespie Jr., Two-dimensional cure simulation of thick thermosetting composite, J. Compos. Mater., 25, 239–273 (1991).

    Google Scholar 

  22. R. E. Walpole and R. H. Myers, Probability and Statistics for Engineers and Scientists, 5th Ed., Macmillan Publishing Co., New York (1993).

    Google Scholar 

  23. J. V. Beck and K. J. Arnold, Parameter Estimation in Engineering and Science, John Wiley & Sons, New York (1977).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pourshaghaghy.

Additional information

Published in Inzhenerno-Fizicheskii Zhurnal, Vol. 82, No. 5, pp. 944–949, September–October, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kowsary, F., Sefidgar, M., Pourshaghaghy, A. et al. Estimation of kinetic parameters of composite materials during the cure process using the combined wavelet regularization method. J Eng Phys Thermophy 82, 949–955 (2009). https://doi.org/10.1007/s10891-009-0273-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-009-0273-y

Keywords

Navigation