Estimation of kinetic parameters of composite materials during the cure process using the combined wavelet regularization method

  • F. Kowsary
  • M. Sefidgar
  • A. Pourshaghaghy
  • A. Hakkaki-Fard

The limitation of the experimental methods in thermophysical characterization of composite materials leads to an increased use of inverse parameter estimation techniques. However, in some situations the convergence of the inverse algorithm is impossible due to the correlation of the involved parameters and the existing noises in measurement data. Several different approaches have been used to tackle this problem. In this article, a new approach is utilized to solve it. This new technique combines the wavelet denoising and Levenberg–Marquardt regularization method. In order to examine this technique, a highly ill-posed problem is considered as a test case, that is, the estimation of the composite kinetic parameters during the cure process.


Wavelet denoising parameter estimation composite kinetic parameter Levenberg–Marquardt 


  1. 1.
    J. V. Beck, Transient determination of thermal properties, Nucl. Eng. Des., 3, 373–381 (1966).CrossRefGoogle Scholar
  2. 2.
    E. P. Scott and J. V. Beck, Estimation of thermal properties in epoxy matrix/carbon fiber composite materials, J. Compos. Mater., 26, No. 1, 132–149 (1992).CrossRefGoogle Scholar
  3. 3.
    E. P. Scott and J. V. Beck, Estimation of thermal properties in carbon/epoxy composite materials during curing, J. Compos. Mater., 26, No. 1, 20–36 (1992).CrossRefGoogle Scholar
  4. 4.
    B. Garnier, D. Delaunay, and J. V. Beck, Estimation of thermal properties of composite materials without instrumentation inside the samples, Int. J. Thermophys., 13, No. 6, 1097–1111 (1992).CrossRefGoogle Scholar
  5. 5.
    T. Jurkowski, Y. Jarny, and D. Delaunay, Simultaneous identification of thermal conductivity and thermal contact resistance without internal temperature measurements, Inst. Chem. Eng. Symp. Ser., 2, No. 129, 1205–1211 (1992).Google Scholar
  6. 6.
    J. P. Hanak, Experimental Verification of Optimal Experimental Designs for the Estimation of Thermal Properties of Composite Materials, M.S. Thesis, Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA (1995).Google Scholar
  7. 7.
    M. H. Loh and J. V. Beck, Simultaneous estimation of two thermal conductivity components from transient two-dimensional experiments, ASME Paper, No. 91-WA/HT-11 (1991).Google Scholar
  8. 8.
    K. A. Woodbury (Ed.), Inverse Engineering Handbook, CRC Press, Boca Raton (2003).MATHGoogle Scholar
  9. 9.
    M. N. Ozisik and H. R. B. Orlande, Inverse Heat Transfer Fundamentals and Applications, Taylor & Francis, New York (2000).Google Scholar
  10. 10.
    N. Al-Khalidy, On the solution of parabolic and hyperbolic inverse heat conduction problems, Int. J. Heat Mass Transfer, 41, 3731–3740 (1998).CrossRefMATHGoogle Scholar
  11. 11.
    J. V. Beck, B. Blackwell, and C. R. Clair, Inverse Heat Conduction, Wiley, New York (1985).MATHGoogle Scholar
  12. 12.
    R. E. Kalman, A new approach to linear filtering and prediction problems, Trans. ASME, J. Basic Eng., 82D, 35–45 (1960).Google Scholar
  13. 13.
    C. Ji and H. Jang, Experimental investigation in inverse heat conduction problem, Numer. Heat Transfer, Part A, 34, 75–91 (1998).CrossRefGoogle Scholar
  14. 14.
    P. Tuan, C. Ji, L. Fong, and W. Huang, An input estimation to on-line two-dimensional inverse heat conduction problems, Numer. Heat Transfer, Part B, 29, 345–363 (1996).CrossRefGoogle Scholar
  15. 15.
    G. Strang and T. Nguyen, Wavelets and Filter Banks, Wellesley-Cambridge Press (1996).Google Scholar
  16. 16.
    H. Ahmadi Noubari, A. Pourshaghaghy, F. Kowsary, and A. Hakkaki-Fard, Wavelet application for reduction of measurement noise effects in inverse heat transfer problems, Int. J. Numer. Meth. Heat Fluid Flow, 18, No. 2, 217–236 (2008).CrossRefMATHGoogle Scholar
  17. 17.
    A. C. Loos and G. S. Springer, Curing of graphite/epoxy composites, Air Force Materials Laboratory Report AFWAL-TR-83-4040 (1983).Google Scholar
  18. 18.
    G. P. Piloyan, I. D. Ryabchikov, and O. S. Novikova, Determination of activation energies of chemical reactions by differential thermal analysis, Nature, 212, 1229 (1966).CrossRefGoogle Scholar
  19. 19.
    Y. Jarny, D. Delaunay, and J. S. Le Brizaut, Inverse Analysis of the Elastomer Cure Control of the Vulcanization Degree, ISITEM/LTI, Universite de Nantes (1993).Google Scholar
  20. 20.
    D. A. Tortorelli and P. Michaleris, Design sensitivity analysis: Overview and review, Inverse Probl. Eng., 1, 71–105 (1994).CrossRefGoogle Scholar
  21. 21.
    T. A. Bogetti and J. W. Gillespie Jr., Two-dimensional cure simulation of thick thermosetting composite, J. Compos. Mater., 25, 239–273 (1991).Google Scholar
  22. 22.
    R. E. Walpole and R. H. Myers, Probability and Statistics for Engineers and Scientists, 5th Ed., Macmillan Publishing Co., New York (1993).Google Scholar
  23. 23.
    J. V. Beck and K. J. Arnold, Parameter Estimation in Engineering and Science, John Wiley & Sons, New York (1977).MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • F. Kowsary
    • 1
  • M. Sefidgar
    • 1
  • A. Pourshaghaghy
    • 2
  • A. Hakkaki-Fard
    • 1
  1. 1.Department of Mechanical Engineering, Faculty of EngineeringUniversity of TehranTehranIran
  2. 2.Department of Mechanical EngineeringIran University of Science and Technology (IUST)TehranIran

Personalised recommendations