Qualitative characteristics of the fuel gas obtained as a result of the thermochemical processing of plant biomass by the pyrolysis method

  • P. L. Falyushin
  • G. I. Zhuravskii
  • R. F. Bratishko
  • V. N. Kozhurin
  • E. V. Anufrieva

Results of experimental investigations on determination of the output, composition, and combustion heat of the fuel gas obtained as a result of the pyrolysis of willow and alder sawdust, wood-waste pellets, peat, neutralized hydrolytic lignin, and plant-growing wastes (straw and flax boon) and the mechanisms of its formation under different pyrolysis conditions are presented.


pyrolysis thermal decomposition organic waste energy carriers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Z. F. Chukhanov, Some Problems of Fuel and Power Engineering [in Russian], Izd. AN SSSR, Moscow (1961).Google Scholar
  2. 2.
    S. M. Reprintseva, Study of the Process of Obtaining a Fuel Gas from Milled Peat for Communal-Everyday and Industrial Necessities by the Method of Thermal Decomposition in a Descending Layer with Outside Heating, Author’s Abstract of Candidate Dissertation (in Engineering), Minsk (1960).Google Scholar
  3. 3.
    S. M. Reprintseva, Thermal Decomposition of Dispersed Solid Fuels [in Russian], Nauka i Tekhnika, Minsk (1965).Google Scholar
  4. 4.
    G. G. Geletukha and T. A. Zheleznaya, Survey of modern technologies for obtaining a liquid fuel from a biomass by rapid pyrolysis, Ékotekhnol. Resursosberezh., No. 2, 3–10 (2000).Google Scholar
  5. 5.
    N. B. Éskin and A. N. Tugov, Analysis of various technologies for thermal processing of a domestic solid garbage, Énergetik, No. 9, 12–17 (1994).Google Scholar
  6. 6.
    V. M. Reznikov and E. F. Morozov, Efficient method of lignin pyrolysis, Khim. Pererab. Dreves., No. 22, 14–18 (1954).Google Scholar
  7. 7.
    D. V. Aristarkhov, G. I. Zhuravskii, É. P. Polesskii, and B. A. Permyakov, Technologies for processing plantbiomass, technical-rubber, and plastic-material wastes, Inzh.-Fiz. Zh., 74, No. 6, 152–155 (2001).Google Scholar
  8. 8.
    C. Rossi, Liquids from wood by fast pyrolysis, Pyrolysis Network, No. 2, 1–8 (1996).Google Scholar
  9. 9.
    C. Rossi, The Bastardo pyrolysis plant for bio-oil production from biomass, Pyrolysis Network, No. 2, 6–7 (1996).Google Scholar
  10. 10.
    R. Mealister, Dynamotive technologies. Biotherm fast pyrolysis, Pyrolysis Network, No. 4, 18–26 (1997).Google Scholar
  11. 11.
    W. Prins and B. M. Wagenaar, Review of the rotation cone technology for flash pyrolysis of biomass, Int. Conf. on Gasification and Pyrolysis of Biomass: Rec., Germany, Stuttgart (1997), pp. 316–326.Google Scholar
  12. 12.
    R. Font and P. T. Williams, Pyrolysis of biomass with constant heating rate: influence of the operating conditions, Thermochim. Acta, 250, 109–123 (1995).CrossRefGoogle Scholar
  13. 13.
    D. V. Aristarkhov, N. N. Egorov, G. I. Zhuravskii, É. P. Polesskii, and N. S. Sharanda, The Steam Thermolysis of Organic Waste [in Russian], A. V. Luikov ITMO NAN Belarusi, Minsk (2001).Google Scholar
  14. 14.
    A. A. Khalatov and N. P. Timchenko, Thermal Processing of Basic Types of Carbon-Containing Wastes of Agricultural and Industrial Productions [in Russian], Inst. Tekhn. Teplofiz. NAN Ukrainy, Kiev (1996).Google Scholar
  15. 15.
    I. I. Lishtvan, I. S. Nashkevich, A. A. Terent’ev, et al., Gas Generator for a Solid Fuel, Pat. No. 1732 (1997).Google Scholar
  16. 16.
    P. L. Falyushin, V. K. Zhukov, V. A. Buslov, et al., A Methods for Utilization of Rubber-Technical Products and a Gas Generator for Burning of a Mixture Based on Crushed Rubber-Technical Products, Pat. No. 4548 (2002).Google Scholar
  17. 17.
    N. I. Bokhan, P. L. Falyushin, V. A. Buslov, et al., Gas Generator for Plant Growing Waste, Pat. No. 5032 (2003).Google Scholar
  18. 18.
    V. A. Buslov, I. S. Kulikov, and P. L. Falyushin, Gas Generator for a Solid Fuel, Pat. No. 4132 (2001).Google Scholar
  19. 19.
    M. B. Ravich, Fuel and Efficiency of Its Usage [in Russian], Nauka, Moscow (1971).Google Scholar
  20. 20.
    M. I. Chudakov, Industrial Use of Lignin [in Russian], Lesnaya Promyshlennost’, Moscow (1983).Google Scholar
  21. 21.
    I. I. Kasatkin, Handbook for Heat Engineers of Industrial Enterprises [in Russian], Gos. Izd. BSSR, Minsk (1963).Google Scholar
  22. 22.
    N. S. Pechuro, V. D. Kapkin, and O. Yu. Pesin, Chemistry and Technology of a Synthetic Liquid Fuel and Gas [in Russian], Khimiya, Moscow (1986).Google Scholar
  23. 23.
    N. S. Gryaznov, Mechanisms of the Thermal Transformation of Organic Compounds [in Russian], Metallurgiya, Moscow (1983).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • P. L. Falyushin
    • 1
  • G. I. Zhuravskii
    • 2
  • R. F. Bratishko
    • 1
  • V. N. Kozhurin
    • 1
  • E. V. Anufrieva
    • 1
  1. 1.Institute of Problems of the Use of Natural Resources and EcologyNational Academy of Sciences of BelarusMinskBelarus
  2. 2.A. V. Luikov Heat and Mass Transfer InstituteNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations