Skip to main content
Log in

Parameters of tip–sample interactions in shear mode using a quartz tuning fork AFM with controllable Q-factor

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

A quartz tuning fork-based atomic force microscopy for investigating the tip–sample interactions at the nanoscale in the shear-force mode is described. Results of force interactions (damping and elastic forces) can be obtained from the amplitude-phase-distance spectroscopy measurements made with a tuning fork with a tungsten tip and a sample surface. The influence of the interaction between tip and sample using the quality factor as an indicator is investigated. Furthermore, a simple model shows that the extension of a tuning fork-based AFM can be applied to quantitative analysis of the properties of the sample surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Binnig, C. F. Quate, and C. Gerber, Atomic force microscope, Phys. Rev. Lett., 56, 930–933 (1986).

    Article  Google Scholar 

  2. C. Bustamante and D. Keller, Scanning force microscopy in biology, Phys. Today, 48, 32–38 (1995).

    Article  Google Scholar 

  3. Z. Shao, J. Mou, D. M. Czajkowsky, J. Yang, and J.-Y. Yuan, Biological atomic force microscopy: what is achieved and what is needed, Adv. Phys., 45, 1–86 (1996).

    Article  Google Scholar 

  4. V. V. Tsukruk, Scanning probe microscopy of polymer surfaces, Rubber Chem. Technol., 70, 430–467 (1997).

    Google Scholar 

  5. G. Krausch, M. Hipp, M. Boltau, O. Marti, and J. Mlynek, High resolution imaging of polymer surfaces with chemical sensitivity, Macromolecules, 28, 260 (1995).

    Article  Google Scholar 

  6. C. M. Mate, Force microscopy studies of the molecular origins of friction and lubrication, IBM J. Res. Dev., 39, 617–627 (1995).

    Article  Google Scholar 

  7. B. C. Stipe, M. A. Rezaei, and W. Ho, Single molecule vibrational spectroscopy and microscopy, Science, 280, 1732–1735 (1998).

    Article  Google Scholar 

  8. C. Durkan and M. E. Welland, Electronic spin detection in molecules using scanning-tunneling microscopy-assisted electron-spin resonance, Appl. Phys. Lett., 80, 458–460 (2002).

    Article  Google Scholar 

  9. D. Lee, A. Wetzel, R. Bennewitz, E. Meyer, M. Despont, P. Vettiger, and C. Gerber, Switchable cantilever for a time-of-flight scanning force microscope, Appl. Phys. Lett., 84, 1558–1560 (2004).

    Article  Google Scholar 

  10. B. Anczykowski, D. Kruger, and H. Fuchs, Cantilever dynamics in quasinoncontact force microscopy: Spectroscopic aspects, Phys. Rev. B., 53, 15485–15486 (1996).

    Article  Google Scholar 

  11. B. Gotsmann, B. Anczykowski, C. Seidel, and H. Fuchs, Determination of tip–sample interaction forces from measured dynamic force spectroscopy curves and computer simulation, Appl. Surf. Sci., 140, 314–319 (1999).

    Article  Google Scholar 

  12. C. L. Pang, T. V. Ashworth, H. Raza, S. A. Haycock, and G. Thornton, A non-contact atomic force microscopy and ‘force spectroscopy’ study of charging on oxide surfaces, Nanotechnology, 15, 862–866 (2004).

    Article  Google Scholar 

  13. P. Guethner, U. Fischer, and K. Dransfeld, Scanning near-field acoustic microscopy, Appl. Phys. B. Photophys. Laser Chem., B 48, 89–92 (1989).

    Google Scholar 

  14. K. Karrai and R. D. Grober, Piezoelectric tip—sample distance control for near field optical microscopes, Appl. Phys. Lett., 66, 1842–1844 (1995).

    Article  Google Scholar 

  15. F. J. Giessibl, High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork, Appl. Phys. Lett., 73, 3956–3958 (1989).

    Article  Google Scholar 

  16. J. Rychen, T. Ihn, P. Studerus, A. Herrmann, and K. Ensslin, A low-temperature dynamic mode scanning force microscope operating in high magnetic fields, Rev. Sci. Instrum., 70, 2765–2768 (1999).

    Article  Google Scholar 

  17. J. Zang and S. O’Shea, Tuning forks as micromechanical mass sensitive sensors for bio- or liquid detection, Sensor Actuator, 94, 65–72 (2003).

    Article  Google Scholar 

  18. W. H. J. Rensen, Imaging soft samples in liquid with tuning fork based shear force microscopy, Appl. Phys. Lett., 66, 1842–1844 (1995).

    Article  Google Scholar 

  19. K. Karrai and I. Tiemann, Interfacial shear force microscopy, Phys. Rev. B, 62, 13174–13181 (2000).

    Article  Google Scholar 

  20. Vo Thanh Tung, S. A. Chizhik, V. V. Chikunov, Nguyen Tho Vuong, and Tran Xuan Hoai, Influence of additional mass on quartz tuning fork in dynamic operation mode, in: Proc. 7th Int. BelSPM-7, Minsk (2006), pp. 236–240.

  21. http://microtm.com/nt206/nt206r.htm.

  22. Vo Thanh Tung and S. A. Chizhik, Quartz tuning fork atomic force microscopy using quality-factor control, in: Proc. Int. Nanomeeting 2007, Minsk (2007), pp. 535–538.

  23. J. M. Fridet and E. Carry, Introduction to the quartz tuning fork, Am. J. Phys., 75, 415–422 (2007).

    Article  Google Scholar 

  24. F. D. Callaghan, X. Yu, and C. J. Mellow, Variable temperature magnetic force microscopy with piezoelectric quartz tuning forks as probes optimized using Q-control, Appl. Phys. Lett., 87, 214106 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vo Thanh Tung.

Additional information

Published in Inzhenerno-Fizicheskii Zhurnal, Vol. 82, No. 1, pp. 141–149, January–February, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thanh Tung, V., Chizhik, S.A. & Xuan Hoai, T. Parameters of tip–sample interactions in shear mode using a quartz tuning fork AFM with controllable Q-factor. J Eng Phys Thermophy 82, 140–148 (2009). https://doi.org/10.1007/s10891-009-0155-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-009-0155-3

Keywords

Navigation