Journal of Engineering Physics and Thermophysics

, Volume 82, Issue 1, pp 140–148 | Cite as

Parameters of tip–sample interactions in shear mode using a quartz tuning fork AFM with controllable Q-factor

  • Vo Thanh Tung
  • S. A. Chizhik
  • Tran Xuan Hoai

A quartz tuning fork-based atomic force microscopy for investigating the tip–sample interactions at the nanoscale in the shear-force mode is described. Results of force interactions (damping and elastic forces) can be obtained from the amplitude-phase-distance spectroscopy measurements made with a tuning fork with a tungsten tip and a sample surface. The influence of the interaction between tip and sample using the quality factor as an indicator is investigated. Furthermore, a simple model shows that the extension of a tuning fork-based AFM can be applied to quantitative analysis of the properties of the sample surface.


Tuning fork shear force damping force elastic factor quality factor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Binnig, C. F. Quate, and C. Gerber, Atomic force microscope, Phys. Rev. Lett., 56, 930–933 (1986).CrossRefGoogle Scholar
  2. 2.
    C. Bustamante and D. Keller, Scanning force microscopy in biology, Phys. Today, 48, 32–38 (1995).CrossRefGoogle Scholar
  3. 3.
    Z. Shao, J. Mou, D. M. Czajkowsky, J. Yang, and J.-Y. Yuan, Biological atomic force microscopy: what is achieved and what is needed, Adv. Phys., 45, 1–86 (1996).CrossRefGoogle Scholar
  4. 4.
    V. V. Tsukruk, Scanning probe microscopy of polymer surfaces, Rubber Chem. Technol., 70, 430–467 (1997).Google Scholar
  5. 5.
    G. Krausch, M. Hipp, M. Boltau, O. Marti, and J. Mlynek, High resolution imaging of polymer surfaces with chemical sensitivity, Macromolecules, 28, 260 (1995).CrossRefGoogle Scholar
  6. 6.
    C. M. Mate, Force microscopy studies of the molecular origins of friction and lubrication, IBM J. Res. Dev., 39, 617–627 (1995).CrossRefGoogle Scholar
  7. 7.
    B. C. Stipe, M. A. Rezaei, and W. Ho, Single molecule vibrational spectroscopy and microscopy, Science, 280, 1732–1735 (1998).CrossRefGoogle Scholar
  8. 8.
    C. Durkan and M. E. Welland, Electronic spin detection in molecules using scanning-tunneling microscopy-assisted electron-spin resonance, Appl. Phys. Lett., 80, 458–460 (2002).CrossRefGoogle Scholar
  9. 9.
    D. Lee, A. Wetzel, R. Bennewitz, E. Meyer, M. Despont, P. Vettiger, and C. Gerber, Switchable cantilever for a time-of-flight scanning force microscope, Appl. Phys. Lett., 84, 1558–1560 (2004).CrossRefGoogle Scholar
  10. 10.
    B. Anczykowski, D. Kruger, and H. Fuchs, Cantilever dynamics in quasinoncontact force microscopy: Spectroscopic aspects, Phys. Rev. B., 53, 15485–15486 (1996).CrossRefGoogle Scholar
  11. 11.
    B. Gotsmann, B. Anczykowski, C. Seidel, and H. Fuchs, Determination of tip–sample interaction forces from measured dynamic force spectroscopy curves and computer simulation, Appl. Surf. Sci., 140, 314–319 (1999).CrossRefGoogle Scholar
  12. 12.
    C. L. Pang, T. V. Ashworth, H. Raza, S. A. Haycock, and G. Thornton, A non-contact atomic force microscopy and ‘force spectroscopy’ study of charging on oxide surfaces, Nanotechnology, 15, 862–866 (2004).CrossRefGoogle Scholar
  13. 13.
    P. Guethner, U. Fischer, and K. Dransfeld, Scanning near-field acoustic microscopy, Appl. Phys. B. Photophys. Laser Chem., B 48, 89–92 (1989).Google Scholar
  14. 14.
    K. Karrai and R. D. Grober, Piezoelectric tip—sample distance control for near field optical microscopes, Appl. Phys. Lett., 66, 1842–1844 (1995).CrossRefGoogle Scholar
  15. 15.
    F. J. Giessibl, High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork, Appl. Phys. Lett., 73, 3956–3958 (1989).CrossRefGoogle Scholar
  16. 16.
    J. Rychen, T. Ihn, P. Studerus, A. Herrmann, and K. Ensslin, A low-temperature dynamic mode scanning force microscope operating in high magnetic fields, Rev. Sci. Instrum., 70, 2765–2768 (1999).CrossRefGoogle Scholar
  17. 17.
    J. Zang and S. O’Shea, Tuning forks as micromechanical mass sensitive sensors for bio- or liquid detection, Sensor Actuator, 94, 65–72 (2003).CrossRefGoogle Scholar
  18. 18.
    W. H. J. Rensen, Imaging soft samples in liquid with tuning fork based shear force microscopy, Appl. Phys. Lett., 66, 1842–1844 (1995).CrossRefGoogle Scholar
  19. 19.
    K. Karrai and I. Tiemann, Interfacial shear force microscopy, Phys. Rev. B, 62, 13174–13181 (2000).CrossRefGoogle Scholar
  20. 20.
    Vo Thanh Tung, S. A. Chizhik, V. V. Chikunov, Nguyen Tho Vuong, and Tran Xuan Hoai, Influence of additional mass on quartz tuning fork in dynamic operation mode, in: Proc. 7th Int. BelSPM-7, Minsk (2006), pp. 236–240.Google Scholar
  21. 21.
  22. 22.
    Vo Thanh Tung and S. A. Chizhik, Quartz tuning fork atomic force microscopy using quality-factor control, in: Proc. Int. Nanomeeting 2007, Minsk (2007), pp. 535–538.Google Scholar
  23. 23.
    J. M. Fridet and E. Carry, Introduction to the quartz tuning fork, Am. J. Phys., 75, 415–422 (2007).CrossRefGoogle Scholar
  24. 24.
    F. D. Callaghan, X. Yu, and C. J. Mellow, Variable temperature magnetic force microscopy with piezoelectric quartz tuning forks as probes optimized using Q-control, Appl. Phys. Lett., 87, 214106 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • Vo Thanh Tung
    • 1
    • 2
  • S. A. Chizhik
    • 1
  • Tran Xuan Hoai
    • 2
  1. 1.A.V. Luikov Heat and Mass Transfer InstituteNational Academy of Sciences of BelarusMinskBelarus
  2. 2.Institute of Applied Physics and Scientific Instrument of the Vietnamese Academy of Science and TechnologyNhatrangVietnam

Personalised recommendations