Advertisement

Journal of Engineering Physics and Thermophysics

, Volume 81, Issue 5, pp 963–975 | Cite as

Mathematical modeling of convective diffusion of soluble compounds in the soil at nonisothermal moisture transfer

  • I. A. Gishkelyuk
  • S. P. Kundas
  • N. N. Grinchik
Article
  • 83 Downloads

This paper presents a mathematical model of solute transport in a soil with account for nonisothermal moisture transfer. The model is based on the equations of convective diffusion, sorption kinetics, and two-phase filtration, on the isotherms of water sorption by the soil, and on the thermodynamic laws. A numerical analysis of the influence of various physical mechanisms on the process of mass transfer in the soil has been performed.

Keywords

Porous Medium Liquid Flow Sorption Isotherm Solute Transport Molecular Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. W. Fetter, Contaminant Hydrogeology, Prentice-Hall Publishing Company (1998).Google Scholar
  2. 2.
    J. Bear and A. Verruijt, Modeling Groundwater Flow and Pollution, D. Reidel Publishing Co (1987).Google Scholar
  3. 3.
    J. Simunek, M. Th. van Genuchten, and M. Sejna, The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat and Multiple Solutes in Variably-Saturated Media, Version 3.0. Department of Environmental Sciences, University of California, Riverside (2005).Google Scholar
  4. 4.
    A. V. Luikov, Theory of Drying [in Russian], Énergiya, Moscow (1968).Google Scholar
  5. 5.
    A. S. Shubin, Influence of Temperature and Moisture Parameters on the Moisture Transfer [in Russian], Profizdat, Moscow (1958).Google Scholar
  6. 6.
    K. Bunzl, W. Kracke, and W. Schimmack, Vertical migration of 239,240Pu, 241Am, and 137Cs. Fallout in a forest soil under spruce, Analyst, No. 117, 469–473 (1992).Google Scholar
  7. 7.
    V. A. Knatko, A. G. Skomorokhov, V. D. Asimova, et al., Characteristics of 90Sr, 137Cs and 239,240Pu migration in undisturbed soils of southern Belarus after the Chernobyl accident, J. Environ. Radioactivity, 30, No 2, 185–196 (1996).CrossRefGoogle Scholar
  8. 8.
    V. M. Nikolaevskii, Motion of Hydrocarbon Mixtures in a Porous Medium [in Russian], Nedra, Moscow (1968).Google Scholar
  9. 9.
    R. A. Poluéktov, A. G. Topazh, and V. Mirshel’, Comparison of empirical and theoretical approaches in mathematical modeling of agroecosystems using as an example photosynthesis, Mat. Modelir., 10, No. 7, 25–36 (1998).Google Scholar
  10. 10.
    E. V. Shtein, A Course in the Physics of Soils: Textbook [in Russian], Izd. MGU, Moscow (2005).Google Scholar
  11. 11.
    T. M. Roshchina, Adsorption phenomena and surface, Sorosovsk. Obrazov. Zh., No. 2, 89–94 (1998).Google Scholar
  12. 12.
    N. V. Pavlyukevich, Introduction to the Theory of Heat and Mass Transfer in Porous Media [in Russian], ITMO, Minsk (2001).Google Scholar
  13. 13.
    G. P. Brovka, Heat-and Mass Transfer in Freezing Natural Disperse Systems [in Russian], Nauka i Tekhnika, Minsk (1991).Google Scholar
  14. 14.
    G. P. Brovka, Calculation of convective transfer in water-soluble compounds with account for the sorption kinetics, Inzh.-Fiz. Zh., 74, No. 3, 25–29 (2001).Google Scholar
  15. 15.
    I. I. Lishtvan, G. P. Brovka, I. V. Dedyulya, and E. N. Rovdan, The characteristics of the sorption and migration of the radionuclides Cs-137 and Sr-90 in natural disperse systems, Vestsi Akad. Navuk Belarusi, Ser. Khim. Navuk, No. 4, 79–83 (1996).Google Scholar
  16. 16.
    V. M. Prokhorov (R. M. Aleksakhin Ed.), Migration of Radioactive Contaminants in Soils. Physicochemical Mechanisms and Modeling [in Russian], Énergiya, Moscow (1981).Google Scholar
  17. 17.
    G. Z. Serebryanyi and M. L. Zhemzhurov, Analytical model of migration of radionuclides in porous media, Inzh.-Fiz. Zh., 76, No. 6, 146–150 (2003).Google Scholar
  18. 18.
    A. P. Babichev, N. A. Babushkina, A. M. Bratkovskii, et al. (I. S. Grigor’ev and E. Z. Meilikhov Eds.), Physical Quantities: Handbook [in Russian], Énergoatomizdat, Moscow (1991).Google Scholar
  19. 19.
    S. P. Kundas, N. N. Grinchik, and I. A. Gishkelyuk, A mathematical model of the migration of radionuclides in the soil, Vest. Polotsk. Gos. Univ., No. 3, 56–60 (2005).Google Scholar
  20. 20.
    S. Kundas, N. Grinchik, and I. Gishkeluk, Computer simulation of non-isothermal water and solute transport in soil, J. University Appl. Sci. Mittweida (Germany), No. 13, 27–30 (2005).Google Scholar
  21. 21.
    N. N. Grinchik, Processes of Transfer in Porous Media, Electrolytes, and Membranes [in Russian], ITMO, Minsk (1991).Google Scholar
  22. 22.
    M. P. Vukalovich, Tables of the Thermophysical Properties of Water and Steam [in Russian], Izd. Standartov, Moscow (1969).Google Scholar
  23. 23.
    O. Zenkevich and K. Morgan, Finite Elements and Approximation [in Russian], Mir, Moscow (1986).Google Scholar
  24. 24.
    Femlab 3.0. User’s Guide, Comsol, Los Angeles (2004).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • I. A. Gishkelyuk
    • 1
  • S. P. Kundas
    • 1
  • N. N. Grinchik
    • 2
  1. 1.A. D. Sakharov International State Ecological UniversityMinskBelarus
  2. 2.A. V. Luikov Heat and Mass Transfer InstituteNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations