Advertisement

Influence of ingested gas crossflow on the formation and structure of secondary flows in the blade passage of a gas turbine

  • K. N. Volkov
Article
  • 59 Downloads

This paper considers the influence of the mass flow of the gas ingested from the cavity formed by the rotor-to-stator clearance on the formation and structure of secondary flows in the blade passage of the gas-turbine stage. The flow is described by the Reynolds-averaged Navier-Stokes equations, to close which the Spalart-Allmaras model and the k-ε model of turbulence with corrections for the rotation and curvature of the streamlines are used. Comparison of the results of the numerical simulation obtained from the point of view of different turbulence models is made.

Keywords

Turbulence Model Secondary Flow Turbulent Viscosity Horseshoe Vortex Blade Passage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. C. Spencer and T. V. Jones, Endwall heat transfer measurements in an annular cascade of nozzle guide vanes at engine representative Reynolds and Mach numbers, Int. J. Heat Fluid Flow, 17, No. 2, 139–147 (1996).CrossRefGoogle Scholar
  2. 2.
    N. Aunpapu, R. Volino, K. Flack, and R. Stoddard, Secondary flow measurements in a turbine passage with endwall flow modification, ASME Paper, No. GT-2000-0212 (2000).Google Scholar
  3. 3.
    Y. J. Moon and S. R. Koh, Counter-rotating streamwise vortex formation in the turbine cascade with endwall fence, Comput. and Fluids, 30, 473–490 (2001).MATHCrossRefGoogle Scholar
  4. 4.
    G. P. Virr, J. W. Chew, and J. Coupland, Application of computational fluid dynamics to turbine disc cavities, ASME J. Turbomachinery, 116, 701–708 (1994).CrossRefGoogle Scholar
  5. 5.
    K. Jarzombek, H. J. Dohman, F. K. Benra, and O. Scheider, Flow analysis in gas turbine pre-swirl cooling air systems — variation of geometric parameters, ASME Paper, No. GT-2006-90445 (2006).Google Scholar
  6. 6.
    K. Reid, J. Denton, G. Pullan, E. Curtis, and J. Longley, The effect of stator-rotor hub sealing on the mainstream aerodynamics of a turbine, ASME Paper, No. GT-2006-90838 (2006).Google Scholar
  7. 7.
    S. Shahpar, D. Giacche, and L. Lapworth, Multi-objective design and optimization of bypass outlet guide vanes, ASME Paper, No. GT-2003-38700 (2003).Google Scholar
  8. 8.
    D. Kozulovic and T. Rober, Modelling of streamline curvature effects in turbomachinery flows, ASME Paper, No. GT-2006-90265 (2006).Google Scholar
  9. 9.
    R. Pecnik, P. Pieringer, and W. Sanz, Numerical investigation of the secondary flow of a transonic turbine stage using various turbulence closures, ASME Paper, No. GT-2005-68754 (2005).Google Scholar
  10. 10.
    C. Cao, J. W. Chew, P. R. Millington, and S. I. Hogg, Interaction of rim seal and annulus flows in an axial flow turbine, ASME J. Eng. Gas Turbines Power, 126, 786–793 (2003).CrossRefGoogle Scholar
  11. 11.
    R. Jakoby, K. Lindblad, J. Larsson, L. de Vito, D. Bohn, J. Funcke, and A. Decker, Numerical simulation of the unsteady flow field in an axial gas turbine rim seal configuration, ASME Paper, No. GT-2004-53829 (2004).Google Scholar
  12. 12.
    J. Boudet, V. N. D. Autef, J. W. Chew, N. J. Hills, and O. Gentilhomme, Numerical simulation of rim seal flows in axial turbines, The Aeronaut. J., 109, 373–383 (2005).Google Scholar
  13. 13.
    J. Boudet, N. J. Hills, and J. W. Chew, Numerical simulation of the flow interaction between turbine main annulus and disc cavities, ASME Paper, No. GT-2006-90307 (2006).Google Scholar
  14. 14.
    B. Rosic, J. D. Denton, and G. Pullan, The importance of shroud leakage modelling in multistage turbine flow calculations, ASME Paper, No. GT-2005-68459 (2005).Google Scholar
  15. 15.
    D. Cherry, A. Wadia, R. Beacock, M. Subramanian, and P. Vitt, Analytical investigation of a low pressure turbine with and without flowpath endwall gaps, seals and clearance features, ASME Paper, No. GT-2005-68492 (2005).Google Scholar
  16. 16.
    R. P. Roy, J. Feng, Saurabh P. Narzary, and R. E. Paolillo, Experiments on gas ingestion through axial-flow turbine rim seals, ASME Paper, No. GT-2004-53394 (2004).Google Scholar
  17. 17.
    P. R. Spalart and S. R. Allmaras, A one equation turbulence model for aerodynamic flows, AIAA Paper, No. 92-0439 (1992).Google Scholar
  18. 18.
    J. Dacles-Mariani, G. G. Zilliac, J. S. Chow, and P. Bradshaw, Numerical/experimental study of a wingtip vortex in the near field, AIAA J., 33, No. 9, 1561–1568 (1995).CrossRefGoogle Scholar
  19. 19.
    B. E. Launder and D. B. Spalding, The numerical computation of turbulent flows, Comput. Meth. in Appl. Mech. Eng., 3, 269–289 (1974).MATHCrossRefGoogle Scholar
  20. 20.
    M. Kato and B. E. Launder, The modelling of turbulent flow around stationary and vibrating square cylinders, in: Proc. 9th Symp. on Turbulent Shear Flows, 16–18 August 1993, Kyoto, Japan (1993), Vol. 9, pp. 10.4.1–10.4.6.Google Scholar
  21. 21.
    M. A. Leschziner and W. Rodi, Calculation of annular and twin parallel jets using various discretization schemes and turbulent-model variations, ASME J. Fluid Eng., 103, 353–360 (1981).CrossRefGoogle Scholar
  22. 22.
    A. V. Ermishin and S. A. Isaev (Eds.), Control of the Flow Past Bodies with Vortical Cells as Applied to Flying Vehicles of Integrated Arrangement (Numerical and Physical Modeling) [in Russian], Moscow, St. Petersburg (2001).Google Scholar
  23. 23.
    K. N. Volkov, Application of the control-volume method to the solution of problems of fluid mechanics on unstructured grids, Vychisl. Metody Programmir., 6, No. 1, 43–60 (2005).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  1. 1.University of SurreyGuilfordUK

Personalised recommendations