Characteristics of porous media used for modeling of filtration combustion

  • K. V. Dobrego
  • I. A. Koznacheev
  • E. S. Shmelev


Models that can be used in calculating the transport parameters of a porous medium are considered. Despite their simplicity, the models qualitatively and quantitatively characterize popular classes of porous media and are not given in the literature in the context in question, as far as the authors know. Certain aspects of determination and evaluation of the parameters of radiative transfer in a porous medium are discussed.


Porous Medium Nusselt Number Radiative Transfer Heat Mass Transfer Hollow Sphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. J. Weinberg, Combustion temperature — the future? Nature, No. 233, 239–241 (1971).Google Scholar
  2. 2.
    Yu. Sh. Matros, Propagation of Thermal Waves in Heterogeneous Media [in Russian], Nauka, Novosibirsk (1988).Google Scholar
  3. 3.
    K. V. Dobrego and S. A. Zhdanok, The Physics of Filtration Combustion of Gases [in Russian], ITMO, Minsk (2002).Google Scholar
  4. 4.
    V. V. Gavrilyuk, Yu. M. Dmitrenko, S. A. Zhdanok, V. G. Minkina, S. I. Shabunya, N. L. Yadrevskaya, and A. D. Yakimovich, Conversion of methane into hydrogen in the filtration combustion wave, in: Heat-and Mass Transfer-MIF-2000: 4th Minsk Int. Forum, 22–26 May 2000, Minsk (2000), Vol. 4, pp. 21–31.Google Scholar
  5. 5.
    S. I. Shabunya, V. V. Martynenko, N. L. Yadrevskaya, and A. D. Yakimovich, Modeling of the nonstationary process of conversion of methane to hydrogen in a filtration-combustion wave, Inzh.-Fiz. Zh., 74, No. 5, 7–12 (2001).Google Scholar
  6. 6.
    J. P. Bingue, A. V. Saveliev, A. A. Fridman, and L. A. Kennedy, Hydrogen production in ultra-rich filtration combustion of methane and hydrogen sulfide, Int. J. Hydrogen Energy, 27, No. 6, 643–649 (2002).CrossRefGoogle Scholar
  7. 7.
    J. P. Bingue, A. V. Saveliev, and L. A. Kennedy, Optimization of hydrogen production by filtration combustion of methane by oxygen enrichment and depletion, Int. J. Hydrogen Energy, 29, No. 13, 1365–1370 (2004).CrossRefGoogle Scholar
  8. 8.
    R. Dhamrat and J. Ellzey, Numerical and experimental study of the conversion of methane to hydrogen in a porous media reactor, Combust. Flame, 144, 4, 698–709 (2006).CrossRefGoogle Scholar
  9. 9.
    K. V. Dobrego, N. N. Gnezdilov, I. M. Kozlov, and E. S. Shmelyov, Numerical study and optimization of the porous media VOC oxidizer with electric heating elements, Int. J. Heat Mass Transfer, 49, No. 25–26, 5062–5069 (2006).MATHGoogle Scholar
  10. 10.
    K. V. Dobrego, N. N. Gnesdilov, and I. M. Kozlov, Parametric study of recuperative VOC oxidation reactor with porous media, Int. J. Heat Mass Transfer, 50, No. 13–14, 2787–2794 (2007).MATHGoogle Scholar
  11. 11.
    K. V. Dobrego, E. S. Shmelev, and A. V. Suvorov, Use of the method of filtration combustion for cleaning solid disperse and liquid media of organic fouling, in: Proc. Int. Sci.-Tech. Conf. “New Technologies of the Recycling of Industrial and Municipial Waste,” 24–26 November 2004, Minsk (2004), pp. 148–150.Google Scholar
  12. 12.
    K. V. Dobrego, N. N. Gnesdilov, S. H. Lee, and H. K. Choi, Lean combustibility limit of methane in reciprocal flow filtration combustion reactor, Int. J. Heat Mass Transfer (in press).Google Scholar
  13. 13.
    S. Ergun, Fluid flow through packed columns, Chem. Eng. Progress, 48, No. 2, 89–94 (1952).Google Scholar
  14. 14.
    A. A. Zhukauskas, Convective Heat Transfer in Heat Exchangers [in Russian], Nauka, Moscow (1982).Google Scholar
  15. 15.
    A. V. Luikov, Heat-and Mass Transfer: Handbook [in Russian], Énergiya, Moscow (1972).Google Scholar
  16. 16.
    M. É. Aérov, O. M. Todes, and D. A. Narinskii, Apparatuses with a Steady-State Granular Bed [in Russian], Khimiya, Leningrad (1979).Google Scholar
  17. 17.
    N. Wakao and S. Kaguei, Heat and Mass Transfer in Packed Beds, Gordon and Breach, New York (1982).Google Scholar
  18. 18.
    A. A. Amiri and K. Vafai, Analysis of dispersion effects and non-thermal equilibrium, non-Darcian, variable porosity incompressible flow though porous media, Int. J. Heat Mass Transfer, 37, No. 6, 939–954 (1994).CrossRefGoogle Scholar
  19. 19.
    G. E. Gorelik, V. V. Levdanskii, V. G. Leitsina, and N. V. Pavlyukevich, On radiation absorption in a highporous material layer, Inzh.-Fiz. Zh., 50, No. 6, 999–1005 (1986).Google Scholar
  20. 20.
    J. D. Verschoor and P. Greeber, Radiation heat transfer intensification in fiber tissue, Trans. ASME, 74, 961–968 (1952).Google Scholar
  21. 21.
    J. G. Hoffmann, R. Echigo, H. Yoshida, and S. Tada, Experimental study on combustion in porous media with a reciprocating flow system, Combust. Flame, 111, No. 1, 32–46 (1997).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • K. V. Dobrego
    • 1
  • I. A. Koznacheev
    • 1
  • E. S. Shmelev
    • 1
  1. 1.A. V. Luikov Heat and Mass Transfer InstituteNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations