Skip to main content
Log in

Thermal and force loads on the vehicle surface in high-velocity motion in the earth’s atmosphere

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Abstract

Consideration has been given to a number of aspects of mathematical modeling of a high-velocity flight in the earth’s atmosphere in a wide range of variation of the determining parameters. Super-and hypersonic gas flow past flying vehicles has been investigated based on computer-aided calculations with allowance for its actual properties. Data on the distribution of gasdynamic parameters in the flow field, including thermal and force loads on the surface, have been obtained and analyzed. The issues of applying today’s information technologies to archiving scientific knowledge obtained in electronic databases of a specialized Internet center and their dissemination via the Global Network have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. Clarke and M. McChesney, The Dynamics of Real Gases [Russian translation], Mir, Moscow (1967).

    Google Scholar 

  2. a. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and of High-Temperature Hydrodynamic Phenomena [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  3. V. M. Kovenya, G. A. Tarnavskii, and S. G. Chernyi, Use of the Method of Splitting in Aerodynamics Problems [in Russian], Nauka, Novosibirsk (1990).

    Google Scholar 

  4. G. A. Tarnavskii and S. I. Shpak, Decomposition of methods and paralleling of the algorithms of solving aerodynamics and physical gas dynamics problems, Programmirovanie, No. 6, 45–57 (2000).

  5. G. A. Tarnavskii and V. D. Korneev, Paralleling of the program complex of mathematical simulation of real-gas high-velocity flows, Avtometriya, 39, No. 3, 72–83 (2003).

    Google Scholar 

  6. W. G. Hayes and R. F. Probstein, Hypersonic Flow Theory [Russian translation], IL, Moscow (1962).

    Google Scholar 

  7. R. Feynman, R. B. Leighton, and M. Sands, Feynman Lectures in Physics, Vols. 3–4: Radiation, Waves, Quanta, Kinetics, Heat, Sound [Russian translation], Mir, Moscow (1976).

    Google Scholar 

  8. I. Prigogine and D. Kondepudi, Modern Thermodynamics. From Heat Engines to Dissipative Structures [Russian translation], Mir, Moscow (2002).

    Google Scholar 

  9. G. A. Tarnavskii and S. I. Shpak, Efficient adiabatic exponent in the problems of hypersonic flow of real gas around bodies, Teplofiz. Aéromekh., 8, No. 1, 41–58 (2001).

    Google Scholar 

  10. G. A. Tarnavskii, Shock waves in gases with different adiabatic exponents before and after the shock, Vychisl. Metody Programmir., 3, No. 2, 129–143 (2002).

    Google Scholar 

  11. G. A. Tarnavskii, Shock-wave structures in real gases: transition between different types of interaction of shocks in the region of the solution nonuniqueness, Vychisl. Metody Programmir., 5, No. 2, 219–228 (2004).

    Google Scholar 

  12. G. A. Tarnavskii, Influence of flow angularities in a hypersonic ramjet diffuser on the formation of the shock-wave structure of the real gas flow, Inzh.-Fiz. Zh., 77, No. 3, 155–164 (2004).

    Google Scholar 

  13. G. A. Tarnavskii, Shock-wave regimes of flow at the inlet to the diffuser of a hypersonic straight-flow air-jet engine: influence of the altitude and speed of flight, Teplofiz. Vys. Temp., 43, No. 1, 57–70 (2005).

    Google Scholar 

  14. G. A. Tarnavskii, Shock-wave flow regimes at entry into the diffuser of a hypersonic ramjet engine: influence of physical properties of the gas medium, Inzh.-Fiz. Zh., 79, No. 4, 69–80 (2006).

    Google Scholar 

  15. G. A. Tarnavskii and S. I. Shpak, Techniques of calculation of the effective adiabatic exponent in computer modeling of hypersonic flows, Sib. Zh. Industr. Mat., 4, No. 1(17), 177–197 (2001).

    Google Scholar 

  16. N. B. Vargaftik, Handbook on the Thermophysical Properties of Gases and Liquids [in Russian], Fizmatgiz, Moscow (1963).

    Google Scholar 

  17. A. N. Migun, E. A. Matveichik, A. P. Chernukho, and S. A. Zhdanok, Object-oriented approach to simulation of chemical reaction kinetics, Inzh.-Fiz. Zh., 78, No. 1, 153–158 (2005).

    Google Scholar 

  18. G. A. Tarnavskii and S. I. Shpak, Problems of numerical simulation of a supersonic laminar-turbulent flow around finite-size bodies, Mat. Modelir., 10, No. 6, 53–74 (1998).

    Google Scholar 

  19. G. A. Tarnavskii and S. I. Shpak, Calculation of heat fluxes in supersonic viscous gas flow around bluff bodies, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 3, 179–183 (1999).

  20. V. F. Volkov and G. A. Tarnavskii, Disturbance of symmetry and hysteresis of stationary and quasi-stationary solutions of the Euler and Navier-Stokes equations, Zh. Vych. Mat. Mat. Fiz., 41, No. 11, 1742–1750 (2001).

    MathSciNet  Google Scholar 

  21. G. A. Tarnavskii and S. I. Shpak, Certain aspects of computer simulation of hypersonic flows: stability, nonuniqueness, and bifurcation of numerical solutions of the Navier-Stokes equations, Inzh.-Fiz. Zh., 74, No. 3, 125–132 (2001).

    Google Scholar 

  22. G. A. Tarnavskii, G. S. Khakimzyanov, and A. G. Tarnavskii, Modeling of hypersonic flows: influence of the starting conditions of the algorithm on the final solution in the vicinity of bifurcation points, Inzh.-Fiz. Zh., 76, No. 5, 54–60 (2003).

    Google Scholar 

  23. S. N. Korobeinikov, Nonlinear Deformation of Solid Bodies [in Russian], Izd. SO RAN, Novosibirsk (2000).

    Google Scholar 

  24. G. A. Tarnavskii, A. G. Tarnavskii, and K. V. Gilev, Informational-computational Internet-Center “Aeromechanics.” The firstline: program complex “Shock,” Vychisl. Metody Programmir., 6, No. 1, 27–48 (2005).

    Google Scholar 

  25. G. A. Tarnavskii, A. G. Tarnavskii, A. V. Aliev, and S. B. Zhibinov, Informational-computational complex “Flow” of the Internet-Center for dissimination of scientific knowledge, Infosfera, No. 34, 35–38 (2007).

  26. G. A. Tarnavskii, A. V. Aliev, and A. G. Tarnavskii, Computer simulation in aeromechanics: program complex “Flow-5,” Aviakosm. Tekh. Tekhnol., No. 4, 27–38 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Tarnavskii.

Additional information

__________

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 81, No. 2, pp. 338–344, March–April, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarnavskii, G.A. Thermal and force loads on the vehicle surface in high-velocity motion in the earth’s atmosphere. J Eng Phys Thermophy 81, 359–365 (2008). https://doi.org/10.1007/s10891-008-0043-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-008-0043-2

Keywords

Navigation