Thermal and force loads on the vehicle surface in high-velocity motion in the earth’s atmosphere



Consideration has been given to a number of aspects of mathematical modeling of a high-velocity flight in the earth’s atmosphere in a wide range of variation of the determining parameters. Super-and hypersonic gas flow past flying vehicles has been investigated based on computer-aided calculations with allowance for its actual properties. Data on the distribution of gasdynamic parameters in the flow field, including thermal and force loads on the surface, have been obtained and analyzed. The issues of applying today’s information technologies to archiving scientific knowledge obtained in electronic databases of a specialized Internet center and their dissemination via the Global Network have been discussed.


Stagnation Point Force Load Hypersonic Flow Flight Altitude Temperature Boundary Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. F. Clarke and M. McChesney, The Dynamics of Real Gases [Russian translation], Mir, Moscow (1967).Google Scholar
  2. 2.
    a. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and of High-Temperature Hydrodynamic Phenomena [in Russian], Nauka, Moscow (1966).Google Scholar
  3. 3.
    V. M. Kovenya, G. A. Tarnavskii, and S. G. Chernyi, Use of the Method of Splitting in Aerodynamics Problems [in Russian], Nauka, Novosibirsk (1990).Google Scholar
  4. 4.
    G. A. Tarnavskii and S. I. Shpak, Decomposition of methods and paralleling of the algorithms of solving aerodynamics and physical gas dynamics problems, Programmirovanie, No. 6, 45–57 (2000).Google Scholar
  5. 5.
    G. A. Tarnavskii and V. D. Korneev, Paralleling of the program complex of mathematical simulation of real-gas high-velocity flows, Avtometriya, 39, No. 3, 72–83 (2003).Google Scholar
  6. 6.
    W. G. Hayes and R. F. Probstein, Hypersonic Flow Theory [Russian translation], IL, Moscow (1962).Google Scholar
  7. 7.
    R. Feynman, R. B. Leighton, and M. Sands, Feynman Lectures in Physics, Vols. 3–4: Radiation, Waves, Quanta, Kinetics, Heat, Sound [Russian translation], Mir, Moscow (1976).Google Scholar
  8. 8.
    I. Prigogine and D. Kondepudi, Modern Thermodynamics. From Heat Engines to Dissipative Structures [Russian translation], Mir, Moscow (2002).Google Scholar
  9. 9.
    G. A. Tarnavskii and S. I. Shpak, Efficient adiabatic exponent in the problems of hypersonic flow of real gas around bodies, Teplofiz. Aéromekh., 8, No. 1, 41–58 (2001).Google Scholar
  10. 10.
    G. A. Tarnavskii, Shock waves in gases with different adiabatic exponents before and after the shock, Vychisl. Metody Programmir., 3, No. 2, 129–143 (2002).Google Scholar
  11. 11.
    G. A. Tarnavskii, Shock-wave structures in real gases: transition between different types of interaction of shocks in the region of the solution nonuniqueness, Vychisl. Metody Programmir., 5, No. 2, 219–228 (2004).Google Scholar
  12. 12.
    G. A. Tarnavskii, Influence of flow angularities in a hypersonic ramjet diffuser on the formation of the shock-wave structure of the real gas flow, Inzh.-Fiz. Zh., 77, No. 3, 155–164 (2004).Google Scholar
  13. 13.
    G. A. Tarnavskii, Shock-wave regimes of flow at the inlet to the diffuser of a hypersonic straight-flow air-jet engine: influence of the altitude and speed of flight, Teplofiz. Vys. Temp., 43, No. 1, 57–70 (2005).Google Scholar
  14. 14.
    G. A. Tarnavskii, Shock-wave flow regimes at entry into the diffuser of a hypersonic ramjet engine: influence of physical properties of the gas medium, Inzh.-Fiz. Zh., 79, No. 4, 69–80 (2006).Google Scholar
  15. 15.
    G. A. Tarnavskii and S. I. Shpak, Techniques of calculation of the effective adiabatic exponent in computer modeling of hypersonic flows, Sib. Zh. Industr. Mat., 4, No. 1(17), 177–197 (2001).Google Scholar
  16. 16.
    N. B. Vargaftik, Handbook on the Thermophysical Properties of Gases and Liquids [in Russian], Fizmatgiz, Moscow (1963).Google Scholar
  17. 17.
    A. N. Migun, E. A. Matveichik, A. P. Chernukho, and S. A. Zhdanok, Object-oriented approach to simulation of chemical reaction kinetics, Inzh.-Fiz. Zh., 78, No. 1, 153–158 (2005).Google Scholar
  18. 18.
    G. A. Tarnavskii and S. I. Shpak, Problems of numerical simulation of a supersonic laminar-turbulent flow around finite-size bodies, Mat. Modelir., 10, No. 6, 53–74 (1998).Google Scholar
  19. 19.
    G. A. Tarnavskii and S. I. Shpak, Calculation of heat fluxes in supersonic viscous gas flow around bluff bodies, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 3, 179–183 (1999).Google Scholar
  20. 20.
    V. F. Volkov and G. A. Tarnavskii, Disturbance of symmetry and hysteresis of stationary and quasi-stationary solutions of the Euler and Navier-Stokes equations, Zh. Vych. Mat. Mat. Fiz., 41, No. 11, 1742–1750 (2001).MathSciNetGoogle Scholar
  21. 21.
    G. A. Tarnavskii and S. I. Shpak, Certain aspects of computer simulation of hypersonic flows: stability, nonuniqueness, and bifurcation of numerical solutions of the Navier-Stokes equations, Inzh.-Fiz. Zh., 74, No. 3, 125–132 (2001).Google Scholar
  22. 22.
    G. A. Tarnavskii, G. S. Khakimzyanov, and A. G. Tarnavskii, Modeling of hypersonic flows: influence of the starting conditions of the algorithm on the final solution in the vicinity of bifurcation points, Inzh.-Fiz. Zh., 76, No. 5, 54–60 (2003).Google Scholar
  23. 23.
    S. N. Korobeinikov, Nonlinear Deformation of Solid Bodies [in Russian], Izd. SO RAN, Novosibirsk (2000).Google Scholar
  24. 24.
    G. A. Tarnavskii, A. G. Tarnavskii, and K. V. Gilev, Informational-computational Internet-Center “Aeromechanics.” The firstline: program complex “Shock,” Vychisl. Metody Programmir., 6, No. 1, 27–48 (2005).Google Scholar
  25. 25.
    G. A. Tarnavskii, A. G. Tarnavskii, A. V. Aliev, and S. B. Zhibinov, Informational-computational complex “Flow” of the Internet-Center for dissimination of scientific knowledge, Infosfera, No. 34, 35–38 (2007).Google Scholar
  26. 26.
    G. A. Tarnavskii, A. V. Aliev, and A. G. Tarnavskii, Computer simulation in aeromechanics: program complex “Flow-5,” Aviakosm. Tekh. Tekhnol., No. 4, 27–38 (2007).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  1. 1.Institute of Computational Mathematics and Mathematical GeophysicsSiberian Branch of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations