Skip to main content
Log in

Diagnostics of rapidly proceeding processes in fluid and plasma mechanics

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Abstract

A brief description of the main methods used for diagnostics of rapidly proceeding processes in fluid and plasma mechanics is presented. In this description prominence is given to the optical methods of diagnostics and new techniques based on the use of digital laser technologies and statistical methods of measurement-data processing. Examples of application of the indicated methods and techniques, demonstrating their potentialities, are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Dubovik, Photographic Recording of Rapidly Proceeding Processes [in Russian], Nauka, Moscow (1964).

    Google Scholar 

  2. Yu. E. Nesterikhin and R. I. Soloukhin, Methods of Rapid Measurements in Gas Dynamics and Plasma Physics [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  3. V. F. Klimkin, A. N. Papyrin, and R. I. Soloukhin, Optical Methods of Recording Rapidly Proceeding Processes [in Russian], Nauka, Novosibirsk (1980).

    Google Scholar 

  4. H. Schardin, Die Schlierenverfaren und ihre Anwendungen, Naturwissenschaft, 20, 303–439 (1949).

    Article  Google Scholar 

  5. D. D. Maksutov, Shadow Methods of Investigating Optical Systems [in Russian], Gostekhizdat, Moscow (1934).

    Google Scholar 

  6. A. S. Abrukov, Shadow and Interference Methods of Investigating Optical Inhomogeneities [in Russian], Kazan’ (1962).

  7. F. J. Weinberg, Optics of Flame, Butterworth, London (1963).

    Google Scholar 

  8. L. A. Vasil’ev, Shadow Methods [in Russian], Nauka, Moscow (1968).

    Google Scholar 

  9. T. V. Bazhenova, L. G. Gvozdeva, Yu. S. Lobastov, I. M. Naboko, R. G. Nemkov, and O. A. Predvoditeleva, Shock Waves in Real Gases [in Russian], Nauka, Moscow (1968).

    Google Scholar 

  10. W. Hauf and U. Grigull, Optical methods in heat transfer, Adv. Heat Transfer, 6, 131–366 (1970).

    Google Scholar 

  11. W. Merzkirch, Flow Visualization, 2nd ed., Academic Press, Orlando (1987).

    MATH  Google Scholar 

  12. T. S. Durrani and C. A. Greated, Laser Systems in Flow Measurements [Russian translation], Énergiya, Moscow (1980).

    Google Scholar 

  13. R. J. Emrich (Ed.), Methods of Experimental Physics. Fluid Dynamics, Academic Press, New York (1981).

    Google Scholar 

  14. B. S. Rinkevichyus, Laser Diagnostics of Flows [in Russian], MÉI, Moscow (1980).

    Google Scholar 

  15. O. V. Achasov, N. N. Kudryavtsev, S. S. Novikov, R. I. Soloukhin, and N. A. Fomin, Diagnostics of Nonequilibrium States in Molecular Lasers [in Russian], Nauka i Tekhnika, Minsk (1985).

    Google Scholar 

  16. F. Maiynger and O. Feldman (Eds.), Optical Measurements. Techniques and Applications, 2nd augm. ed., Springer Verlag, Berlin (2002).

    Google Scholar 

  17. W. Merzkirch, Flow visualization, in: Encyclopedia of Physical Science and Technology, 3rd ed., Vol. 6, Academic Press, Orlando (2002).

    Google Scholar 

  18. Yu. N. Dubnishchev, V. A. Arbuzov, P. P. Belousov, and P. Ya. Belousov, Optical Methods for Investigation of Flows [in Russian], Sib. Univ. Izd., Novosibirsk (2003).

    Google Scholar 

  19. I. A. Znamenskaya, L. G. Gvozdeva, and N. V. Znamenskii, Methods of Visualization in Mechanics of Gases [in Russian], MGAI im. S. Ordzhonikidze, Moscow (2001).

    Google Scholar 

  20. J. C. Dainty (Ed.), Laser Speckle and Related Phenomena, 2nd ed., Springer Verlag, Berlin (1984).

    Google Scholar 

  21. N. A. Fomin, U. Werneking, and W. Merzkirch, Speckle photography of a turbulent density field, in: M. Pichal (Ed.), Optical Methods in Dynamics of Fluids and Solids, Springer Verlag, Berlin (1985), pp. 159–165.

    Google Scholar 

  22. N. Fomin, Speckle Photography for Fluid Mechanics Measurements, Springer Verlag, Berlin (1998).

    MATH  Google Scholar 

  23. M. Raffel, C. E. Willert, and J. Kompenhans, Particle Image Velocimetry. A Practical Guide, Springer Verlag, Berlin (1998).

    Google Scholar 

  24. N. B. Bazylev, E. I. Lavinskaya, S. P. Rubnikovich, and N. A. Fomin, Digital Laser Speckle-Anemometry of Flows in Microchannels, Preprint No. 8 of the Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, Minsk (2006).

    Google Scholar 

  25. E. F. C. Somerscales, Measurement of velocity. Tracer methods, in: R. J. Emrich (Ed.), Methods of Experimental Physics, Vol. 18A, Fluid Dynamics, Academic Press, New York (1981), pp. 1–240.

    Google Scholar 

  26. N. B. Bazylev, E. I. Lavinskaya, and N. A. Fomin, Influence of multiple-scattering processes on the laser probing of biological tissues, Inzh.-Fiz. Zh., 76, No. 5, 16–24 (2003).

    Google Scholar 

  27. R. J. Emrich, Measurement of velocity. Probe methods for velocity measurements, in: R. J. Emrich (Ed.), Methods of Experimental Physics, Vol. 18A, Fluid Dynamics, Academic Press, New York (1981), pp. 241–344.

    Google Scholar 

  28. A. A. Maslov, Microflows and microsensors in gas dynamics, Plenary paper at the 13th Int. Conf. on the Methods of Aerophysical Research, 5–10 February 2007, Novosibirsk (2007).

  29. R. P. Benedict, Fundamentals of Temperature, Pressure and Flow Measurements, John Wiley, New York (1969).

    Google Scholar 

  30. A. G. Shashkov, Thermoresistors and Their Application [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  31. R. I. Soloukhin, C. W. Curtis, and R. J. Emrich, Measurement of pressure, in: R. J. Emrich (Ed.), Methods of Experimental Physics, Vol. 18A, Fluid Dynamics, Academic Press, New York (1981), pp. 499–610.

    Google Scholar 

  32. S. G. Zaitsev, On measurement of rapidly varying pressures in a gas medium, Prib. Tekh. Éksp., No. 6, 96–99 (1958).

  33. R. I. Soloukhin, Pulse pressure-sensitive detector, Prib. Tekh. Éksp., No. 3, 170–171 (1961).

  34. V. I. Zagorel’skii, N. N. Stolovich, and N. A. Fomin, Pulsed piezoelectric transducer with a matching amplifier for measurement of rapidly varying pressures, Inzh.-Fiz. Zh., 42, No. 2, 303–306 (1982).

    Google Scholar 

  35. G. M. Zharkova, V. N. Kovrizhina, A. P. Petrov, B. V. Smorodsky, H. Khauss, T. Roediger, S. Wagner, and E. Fraemer, Comparative heat transfer studies at hypersonic conditions by means of three measurement techniques. Measurement technique, experimental setup and preceding investigations, in: Proc. 13th Int. Conf. on the Methods of Aerophysical Research, Novosibirsk, Parallel (2007), Pt. 1, pp. 221–228.

  36. R. Konrath, C. Klein, A. Schroder, and J. Kompenhans, Combined application of pressure sensitive paint and particle image velocimetry to the flow above a delta wing, in: I. Grant (Ed.), Flow Visualization, CD Rom Proc. 12th Int. Symp. on Flow Visualization, Optimage Ltd., Edinburgh (2006), pp. 1–14.

    Google Scholar 

  37. N. Fujisawa, N. Nakano, and Y. Oguma, Wind tunnel studies of shear-stress measurements by liquid crystal coatings, in: I. Grant (Ed.), Flow Visualization, CD Rom Proc. 12th Int. Symp. on Flow Visualization, Optimage Ltd., Edinburgh (2006), pp. 1–9.

    Google Scholar 

  38. D. C. Reda, M. C. Wilder, D. J. Farina, and G. Zilliac, New methodology for the measurement of surface shear stress vector distributions, AIAA J., 35, 608–614 (1997).

    Google Scholar 

  39. G. Ben-Dor, O. Igra, and T. Elperin (Eds.), Handbook of Shock Waves, Vol. 1, Academic Press, New York (2001).

    Google Scholar 

  40. G. S. Settles, Schlieren and Shadowgraph Techniques. Visualizing Phenomena in Transparent Media, Springer Verlag, Berlin (2001).

    MATH  Google Scholar 

  41. M. Hugenschmidt and K. Volrath, Light sources and recording methods, in: R. J. Emrich (Ed.), Methods of Experimental Physics, Vol. 18A, Fluid Dynamics, Academic Press, New York (1981), pp. 687–753.

    Google Scholar 

  42. N. A. Fomin and R. I. Soloukhin, Gasdynamic problems for optically inverse media, Revue de Phys. Appl., 14, No. 2, 421–437 (1979).

    Google Scholar 

  43. R. I. Soloukhin and N. A. Fomin, Gasdynamic Mixing Lasers [in Russian], Nauka i Tekhnika, Minsk (1984).

    Google Scholar 

  44. N. A. Fomin, Speckle Photography of Gas Flows [in Russian], Nauka i Tekhnika, Minsk (1989).

    Google Scholar 

  45. C. E. Willert and M. Gharib, Digital particle image velocimetry, Exp. Fluids, 10, No. 4, 181–193 (1991).

    Article  Google Scholar 

  46. R. J. Adrian, Particle-imaging techniques for experimental fluid mechanics, Annual Rev. Fluid Mech., 23, 261–304 (1991).

    Article  Google Scholar 

  47. J. Westerweel, Digital Particle Image Velocimetry: Theory and Application, PhD Dissertation, Delft University Press, Delft (1993).

    Google Scholar 

  48. W. Merzkirch, T. Mrozewski, and H. Wintrich, Digital particle image velocimetry applied to a natural convective flow, Acta Mechanika (Suppl.), 4, 19–26 (1994).

    Google Scholar 

  49. A. Asseban, M. Lallemand, J.-B. Saulnier, N. Fomin, E. Lavinskaya, W. Merzkirch, and D. Vitkin, Digital speckle photography and speckle tomography in heat transfer studies, Optics Laser Technol., 32, 583–592 (2000).

    Article  Google Scholar 

  50. N. B. Bazylev, S. M. Vlasenko, E. I. Lavinskaya, and N. A. Fomin, Digital speckle photography of rapidly proceeding processes in the quasi-real time, Dokl. Nats. Akad. Nauk Belarusi, 45, No. 5, 55–59 (2001).

    Google Scholar 

  51. N. B. Bazylev, A. M. Bratchenya, E. I. Lavinskaya, S. A. Martem’yanov, and N. A. Fomin, Digital laser anemometry of flows in the microchannels of hydrogen-power fuel cells, Dokl. Nats. Akad. Nauk Belarusi, 49, No. 5, 124–129 (2005).

    Google Scholar 

  52. E. I. Lavinskaya, S. A. Martem’yanov, J.-B. Saulnier, and N. A. Fomin, Small-aspect-angle laser tomography of complex gasdynamic flows, Inzh.-Fiz. Zh., 77, No. 5, 94–104 (2004).

    Google Scholar 

  53. N. Fomin, E. Lavinskaya, and K. Takayama, Limited projections laser speckle tomography of complex flows, Optics Lasers Eng., 44, No. 3–4, 335–349 (2006).

    Article  Google Scholar 

  54. N. Fomin, E. Lavinskaya, and D. Vitkin, Speckle tomography of turbulent flows with density fluctuations, Exp. Fluids, 33, 160–169 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Fomin.

Additional information

__________

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 81, No. 1, pp. 68–80, January–February, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fomin, N.A. Diagnostics of rapidly proceeding processes in fluid and plasma mechanics. J Eng Phys Thermophy 81, 68–81 (2008). https://doi.org/10.1007/s10891-008-0010-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-008-0010-y

Keywords

Navigation