Advertisement

Diagnostics of rapidly proceeding processes in fluid and plasma mechanics

  • N. A. Fomin
Article

Abstract

A brief description of the main methods used for diagnostics of rapidly proceeding processes in fluid and plasma mechanics is presented. In this description prominence is given to the optical methods of diagnostics and new techniques based on the use of digital laser technologies and statistical methods of measurement-data processing. Examples of application of the indicated methods and techniques, demonstrating their potentialities, are given.

Keywords

Shock Wave Radon Particle Image Velocimetry Flow Visualization Particle Tracking Velocimetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. S. Dubovik, Photographic Recording of Rapidly Proceeding Processes [in Russian], Nauka, Moscow (1964).Google Scholar
  2. 2.
    Yu. E. Nesterikhin and R. I. Soloukhin, Methods of Rapid Measurements in Gas Dynamics and Plasma Physics [in Russian], Nauka, Moscow (1967).Google Scholar
  3. 3.
    V. F. Klimkin, A. N. Papyrin, and R. I. Soloukhin, Optical Methods of Recording Rapidly Proceeding Processes [in Russian], Nauka, Novosibirsk (1980).Google Scholar
  4. 4.
    H. Schardin, Die Schlierenverfaren und ihre Anwendungen, Naturwissenschaft, 20, 303–439 (1949).CrossRefGoogle Scholar
  5. 5.
    D. D. Maksutov, Shadow Methods of Investigating Optical Systems [in Russian], Gostekhizdat, Moscow (1934).Google Scholar
  6. 6.
    A. S. Abrukov, Shadow and Interference Methods of Investigating Optical Inhomogeneities [in Russian], Kazan’ (1962).Google Scholar
  7. 7.
    F. J. Weinberg, Optics of Flame, Butterworth, London (1963).Google Scholar
  8. 8.
    L. A. Vasil’ev, Shadow Methods [in Russian], Nauka, Moscow (1968).Google Scholar
  9. 9.
    T. V. Bazhenova, L. G. Gvozdeva, Yu. S. Lobastov, I. M. Naboko, R. G. Nemkov, and O. A. Predvoditeleva, Shock Waves in Real Gases [in Russian], Nauka, Moscow (1968).Google Scholar
  10. 10.
    W. Hauf and U. Grigull, Optical methods in heat transfer, Adv. Heat Transfer, 6, 131–366 (1970).Google Scholar
  11. 11.
    W. Merzkirch, Flow Visualization, 2nd ed., Academic Press, Orlando (1987).MATHGoogle Scholar
  12. 12.
    T. S. Durrani and C. A. Greated, Laser Systems in Flow Measurements [Russian translation], Énergiya, Moscow (1980).Google Scholar
  13. 13.
    R. J. Emrich (Ed.), Methods of Experimental Physics. Fluid Dynamics, Academic Press, New York (1981).Google Scholar
  14. 14.
    B. S. Rinkevichyus, Laser Diagnostics of Flows [in Russian], MÉI, Moscow (1980).Google Scholar
  15. 15.
    O. V. Achasov, N. N. Kudryavtsev, S. S. Novikov, R. I. Soloukhin, and N. A. Fomin, Diagnostics of Nonequilibrium States in Molecular Lasers [in Russian], Nauka i Tekhnika, Minsk (1985).Google Scholar
  16. 16.
    F. Maiynger and O. Feldman (Eds.), Optical Measurements. Techniques and Applications, 2nd augm. ed., Springer Verlag, Berlin (2002).Google Scholar
  17. 17.
    W. Merzkirch, Flow visualization, in: Encyclopedia of Physical Science and Technology, 3rd ed., Vol. 6, Academic Press, Orlando (2002).Google Scholar
  18. 18.
    Yu. N. Dubnishchev, V. A. Arbuzov, P. P. Belousov, and P. Ya. Belousov, Optical Methods for Investigation of Flows [in Russian], Sib. Univ. Izd., Novosibirsk (2003).Google Scholar
  19. 19.
    I. A. Znamenskaya, L. G. Gvozdeva, and N. V. Znamenskii, Methods of Visualization in Mechanics of Gases [in Russian], MGAI im. S. Ordzhonikidze, Moscow (2001).Google Scholar
  20. 20.
    J. C. Dainty (Ed.), Laser Speckle and Related Phenomena, 2nd ed., Springer Verlag, Berlin (1984).Google Scholar
  21. 21.
    N. A. Fomin, U. Werneking, and W. Merzkirch, Speckle photography of a turbulent density field, in: M. Pichal (Ed.), Optical Methods in Dynamics of Fluids and Solids, Springer Verlag, Berlin (1985), pp. 159–165.Google Scholar
  22. 22.
    N. Fomin, Speckle Photography for Fluid Mechanics Measurements, Springer Verlag, Berlin (1998).MATHGoogle Scholar
  23. 23.
    M. Raffel, C. E. Willert, and J. Kompenhans, Particle Image Velocimetry. A Practical Guide, Springer Verlag, Berlin (1998).Google Scholar
  24. 24.
    N. B. Bazylev, E. I. Lavinskaya, S. P. Rubnikovich, and N. A. Fomin, Digital Laser Speckle-Anemometry of Flows in Microchannels, Preprint No. 8 of the Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, Minsk (2006).Google Scholar
  25. 25.
    E. F. C. Somerscales, Measurement of velocity. Tracer methods, in: R. J. Emrich (Ed.), Methods of Experimental Physics, Vol. 18A, Fluid Dynamics, Academic Press, New York (1981), pp. 1–240.Google Scholar
  26. 26.
    N. B. Bazylev, E. I. Lavinskaya, and N. A. Fomin, Influence of multiple-scattering processes on the laser probing of biological tissues, Inzh.-Fiz. Zh., 76, No. 5, 16–24 (2003).Google Scholar
  27. 27.
    R. J. Emrich, Measurement of velocity. Probe methods for velocity measurements, in: R. J. Emrich (Ed.), Methods of Experimental Physics, Vol. 18A, Fluid Dynamics, Academic Press, New York (1981), pp. 241–344.Google Scholar
  28. 28.
    A. A. Maslov, Microflows and microsensors in gas dynamics, Plenary paper at the 13th Int. Conf. on the Methods of Aerophysical Research, 5–10 February 2007, Novosibirsk (2007).Google Scholar
  29. 29.
    R. P. Benedict, Fundamentals of Temperature, Pressure and Flow Measurements, John Wiley, New York (1969).Google Scholar
  30. 30.
    A. G. Shashkov, Thermoresistors and Their Application [in Russian], Nauka, Moscow (1967).Google Scholar
  31. 31.
    R. I. Soloukhin, C. W. Curtis, and R. J. Emrich, Measurement of pressure, in: R. J. Emrich (Ed.), Methods of Experimental Physics, Vol. 18A, Fluid Dynamics, Academic Press, New York (1981), pp. 499–610.Google Scholar
  32. 32.
    S. G. Zaitsev, On measurement of rapidly varying pressures in a gas medium, Prib. Tekh. Éksp., No. 6, 96–99 (1958).Google Scholar
  33. 33.
    R. I. Soloukhin, Pulse pressure-sensitive detector, Prib. Tekh. Éksp., No. 3, 170–171 (1961).Google Scholar
  34. 34.
    V. I. Zagorel’skii, N. N. Stolovich, and N. A. Fomin, Pulsed piezoelectric transducer with a matching amplifier for measurement of rapidly varying pressures, Inzh.-Fiz. Zh., 42, No. 2, 303–306 (1982).Google Scholar
  35. 35.
    G. M. Zharkova, V. N. Kovrizhina, A. P. Petrov, B. V. Smorodsky, H. Khauss, T. Roediger, S. Wagner, and E. Fraemer, Comparative heat transfer studies at hypersonic conditions by means of three measurement techniques. Measurement technique, experimental setup and preceding investigations, in: Proc. 13th Int. Conf. on the Methods of Aerophysical Research, Novosibirsk, Parallel (2007), Pt. 1, pp. 221–228.Google Scholar
  36. 36.
    R. Konrath, C. Klein, A. Schroder, and J. Kompenhans, Combined application of pressure sensitive paint and particle image velocimetry to the flow above a delta wing, in: I. Grant (Ed.), Flow Visualization, CD Rom Proc. 12th Int. Symp. on Flow Visualization, Optimage Ltd., Edinburgh (2006), pp. 1–14.Google Scholar
  37. 37.
    N. Fujisawa, N. Nakano, and Y. Oguma, Wind tunnel studies of shear-stress measurements by liquid crystal coatings, in: I. Grant (Ed.), Flow Visualization, CD Rom Proc. 12th Int. Symp. on Flow Visualization, Optimage Ltd., Edinburgh (2006), pp. 1–9.Google Scholar
  38. 38.
    D. C. Reda, M. C. Wilder, D. J. Farina, and G. Zilliac, New methodology for the measurement of surface shear stress vector distributions, AIAA J., 35, 608–614 (1997).Google Scholar
  39. 39.
    G. Ben-Dor, O. Igra, and T. Elperin (Eds.), Handbook of Shock Waves, Vol. 1, Academic Press, New York (2001).Google Scholar
  40. 40.
    G. S. Settles, Schlieren and Shadowgraph Techniques. Visualizing Phenomena in Transparent Media, Springer Verlag, Berlin (2001).MATHGoogle Scholar
  41. 41.
    M. Hugenschmidt and K. Volrath, Light sources and recording methods, in: R. J. Emrich (Ed.), Methods of Experimental Physics, Vol. 18A, Fluid Dynamics, Academic Press, New York (1981), pp. 687–753.Google Scholar
  42. 42.
    N. A. Fomin and R. I. Soloukhin, Gasdynamic problems for optically inverse media, Revue de Phys. Appl., 14, No. 2, 421–437 (1979).Google Scholar
  43. 43.
    R. I. Soloukhin and N. A. Fomin, Gasdynamic Mixing Lasers [in Russian], Nauka i Tekhnika, Minsk (1984).Google Scholar
  44. 44.
    N. A. Fomin, Speckle Photography of Gas Flows [in Russian], Nauka i Tekhnika, Minsk (1989).Google Scholar
  45. 45.
    C. E. Willert and M. Gharib, Digital particle image velocimetry, Exp. Fluids, 10, No. 4, 181–193 (1991).CrossRefGoogle Scholar
  46. 46.
    R. J. Adrian, Particle-imaging techniques for experimental fluid mechanics, Annual Rev. Fluid Mech., 23, 261–304 (1991).CrossRefGoogle Scholar
  47. 47.
    J. Westerweel, Digital Particle Image Velocimetry: Theory and Application, PhD Dissertation, Delft University Press, Delft (1993).Google Scholar
  48. 48.
    W. Merzkirch, T. Mrozewski, and H. Wintrich, Digital particle image velocimetry applied to a natural convective flow, Acta Mechanika (Suppl.), 4, 19–26 (1994).Google Scholar
  49. 49.
    A. Asseban, M. Lallemand, J.-B. Saulnier, N. Fomin, E. Lavinskaya, W. Merzkirch, and D. Vitkin, Digital speckle photography and speckle tomography in heat transfer studies, Optics Laser Technol., 32, 583–592 (2000).CrossRefGoogle Scholar
  50. 50.
    N. B. Bazylev, S. M. Vlasenko, E. I. Lavinskaya, and N. A. Fomin, Digital speckle photography of rapidly proceeding processes in the quasi-real time, Dokl. Nats. Akad. Nauk Belarusi, 45, No. 5, 55–59 (2001).Google Scholar
  51. 51.
    N. B. Bazylev, A. M. Bratchenya, E. I. Lavinskaya, S. A. Martem’yanov, and N. A. Fomin, Digital laser anemometry of flows in the microchannels of hydrogen-power fuel cells, Dokl. Nats. Akad. Nauk Belarusi, 49, No. 5, 124–129 (2005).Google Scholar
  52. 52.
    E. I. Lavinskaya, S. A. Martem’yanov, J.-B. Saulnier, and N. A. Fomin, Small-aspect-angle laser tomography of complex gasdynamic flows, Inzh.-Fiz. Zh., 77, No. 5, 94–104 (2004).Google Scholar
  53. 53.
    N. Fomin, E. Lavinskaya, and K. Takayama, Limited projections laser speckle tomography of complex flows, Optics Lasers Eng., 44, No. 3–4, 335–349 (2006).CrossRefGoogle Scholar
  54. 54.
    N. Fomin, E. Lavinskaya, and D. Vitkin, Speckle tomography of turbulent flows with density fluctuations, Exp. Fluids, 33, 160–169 (2002).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  1. 1.A. V. Luikov Heat and Mass Transfer InstituteNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations