Advertisement

Journal of Engineering Physics and Thermophysics

, Volume 80, Issue 6, pp 1065–1071 | Cite as

Mathematical model of heating a prism with boundary conditions of the 3rd kind

  • Yu. M. Pleskachevskii
  • V. I. Timoshpol’skii
  • S. V. Shil’ko
  • S. L. Gavrilenko
  • S. M. Kabishov
Heat Conduction and Heat Transfer in Technological Processes
  • 32 Downloads

Abstract

This paper describes the procedure of computational determination of the temperature field of a prismatic workpiece heated in a continuous furnace with account for the temperature dependence of the thermal diffusivity. For a numerical solution of the two-dimensional heat conduction equation with boundary conditions of the 3rd kind, an implicit scheme has been used. The calculated time dependences of the temperature for three characteristic points of the cross-section of the prismatic steel workpiece have been compared to the experimental data. The heat transfer coefficients at which the experimental data and the calculated values have a minimum discrepancy have been determined.

Keywords

Heat Transfer Coefficient Thermal Diffusivity Heat Conduction Equation Lateral Face Discrete Analog 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Timoshpol’skii, Yu. A. Samoilovich, I. A. Trusova, V. V. Filippov, and A. P. Nesenchuk (V. I. Timoshpol’skii and Yu. A. Samoilovich, Eds.), A Steel Ingot, in 3 vols., Vol. 3, Heating [in Russian], Belaruskaya Navuka, Minsk (2001).Google Scholar
  2. 2.
    D. Shee, Numerical Methods in Heat Transfer Problems [Russian translation], Mir, Moscow (1988).Google Scholar
  3. 3.
    B. E. Neimark (Ed.), Physical Properties of Steels and Alloys Applied in Power Engineering [in Russian], Énergiya, Moscow-Leningrad (1967).Google Scholar
  4. 4.
    A. A. Samarskii, Introduction to the Theory of Difference Schemes [in Russian], Nauka, Moscow (1971).Google Scholar
  5. 5.
    N. S. Bakhvalov, Numerical Methods [in Russian], in 2 vols., Vol. 2, Nauka, Moscow (1973).Google Scholar
  6. 6.
    G. Korn and T. Korn, Handbook of Mathematics [Russian translation], Nauka, Moscow (1968).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Yu. M. Pleskachevskii
    • 1
  • V. I. Timoshpol’skii
    • 2
  • S. V. Shil’ko
    • 1
  • S. L. Gavrilenko
    • 1
  • S. M. Kabishov
    • 3
  1. 1.V. A. Belyi Institute of Mechanics of Metal-Polymer SystemsNAS of BelarusGomelBelarus
  2. 2.Presidium of the National Academy of Sciences of BelarusMinsk
  3. 3.Belarusian National Technical UniversityMinsk

Personalised recommendations