Advertisement

Investigation of the thermal mode of a high-speed electrical contact by mathematical modeling methods

  • M. P. Galanin
  • A. P. Lototskiy
  • S. S. Urazov
Article
  • 28 Downloads

Abstract

The temperature mode of a metal contact upon transition to a hybrid and further on to a plasma one has been studied. Spatial (three-dimensional) mathematical modeling confirmed the existence of a dependable metal contact before melting of the anchor material and transition to an arc mode of passage of the current after the onset of boiling. The possibility of destruction of the accelerated body during the acceleration time has been investigated.

Keywords

Linear Algebraic Equation Calculation Region Metallic Contact Angular Point Logic Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. F. Zhukov (Ed.), Proceedings of the 1st All-Union Seminar on the Dynamics of a High-Current Arc Discharge in a Magnetic Field [in Russian], Izd. ITF SO AN SSSR, Novosibirsk (1990).Google Scholar
  2. 2.
    V. E. Nakoryakov (Ed.), Proceedings of the 2nd All-Union Seminar on the Dynamics of a High-Current Arc Discharge in a Magnetic Field [in Russian], Izd. ITF SO AN SSSR, Novosibirsk (1992).Google Scholar
  3. 3.
    Yu. I. Belyakov, A. P. Lototskii, V. V. Savichev, and Yu. A. Khalimullin, Investigation of the erosion of metallic contacts in a railtron accelerator, Vestn. MGTU im. N. É. Baumana, Ser. Estestvennye Nauki, No. 2, 46–60 (1999).Google Scholar
  4. 4.
    M. P. Galanin, A. P. Lototskii, S. S. Urazov, and Yu. A. Khalimullin, Mathematical Simulation of the Erosion of Metallic Contacts in a Railtron Accelerator, Preprint No. 79 of the N. V. Keldysh IPM, Ross. Akad. Nauk, Moscow (2003).Google Scholar
  5. 5.
    M. P. Galanin, A. P. Lototskii, and S. S. Urazov, Modeling of the erosion of a metallic contact in an accelerator of railtron type, Vestn. MGTU im. N. É. Baumana, Ser. Estestvennye Nauki, No. 4(15), 81–97 (2004).Google Scholar
  6. 6.
    M. P. Galanin and Yu. P. Popov, Quasistationary Electromagnetic Fields in Inhomogeneous Media: Mathematical Simulation [in Russian], Nauka, Moscow (1995).Google Scholar
  7. 7.
    M. P. Galanin, A. P. Lototskii, Yu. P. Popov, and S. S. Khramtsovskii, Numerical simulation of spatially three-dimensional phenomena on electromagnetic acceleration of conducting macrobodies, Mat. Modelir., 11, No. 8, 3–22 (1999).Google Scholar
  8. 8.
    A. A. Samarskii and E. S. Nikolaev, Methods of Solving Grid Equations [in Russian], Nauka, Moscow (1978).Google Scholar
  9. 9.
    D. S. Kershaw, The incomplete Cholessky-conjugate gradient method for the iterative solution of system of linear equations, J. Comput. Phys., 26, 43–65 (1978).MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    A. George and J. Lu, Computer Solution of Large Sparse Positive Definite Systems [Russian translation], Mir, Moscow (1984).MATHGoogle Scholar
  11. 11.
    M. P. Galanin and S. S. Khramtsovskii, Organizing the Calculation of Three-Dimensional Quasistationary Electromagnetic Fields in Regions with a Complex Geometry of Conductors and Dielectrics, Preprint No. 42 of the N. V. Keldysh IPM, Ross. Akad. Nauk, Moscow (1999).Google Scholar
  12. 12.
    D. K. Faddeev and V. N. Faddeeva, Computational Methods of Linear Algebra [in Russian], Fizmatgiz, Moscow (1963).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • M. P. Galanin
    • 1
  • A. P. Lototskiy
    • 2
  • S. S. Urazov
    • 1
  1. 1.M. V. Keldysh Institute of Applied MathematicsRussian Academy of SciencesMoscowRussia
  2. 2.Troitsk Institute of Innovative and Thermonuclear ResearchMoscow region, TroitskRussia

Personalised recommendations