Advertisement

Influence of the molecular parameters of anionic acrylamide copolymers on the value of the Thoms effect in direct oil emulsions

  • S. V. Chichkanov
  • A. I. Shamsullin
  • V. A. Myagchenkov
Article

Abstract

The influence of molecular parameters (molecular weight and polydispersity in molecular weight) on the value of the reduced Thoms effect in 10% direct oil emulsions has been analyzed with the example of the specimens of anionic acrylamide copolymer of different molecular weight, which were obtained by the ultrasonic-destruction method. The prospects of anionic acrylamide copolymers for use as admixtures reducing the drag of turbulent oil-emulsion flows have been noted for the complex heterophase system studied.

Keywords

Drag Reduction Molecular Parameter Wall Zone Heterophase System Discharge Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. L. Lumley, Drag reduction in turbulent flow by polymer additives, J. Polym. Sci., Macromol. Rev., 7, 263–290 (1973).CrossRefGoogle Scholar
  2. 2.
    A. F. Nikolaev and G. I. Okhrimenko, Water-Soluble Polymers [in Russian], Khimiya, Leningrad (1979).Google Scholar
  3. 3.
    V. A. Myagchenkov and S. V. Chichkanov, The Thoms effect in model and real systems (a review), Zh. Prikl. Khim., 78, Issue 4, 529–544 (2005).Google Scholar
  4. 4.
    Yu. V. Brestkin, Dynamic Phase Transitions in Flow of Polymer Fluids, Author’s Abstract of Doctoral Dissertation (in Physics and Mathematics) [in Russian], Leningrad (1990).Google Scholar
  5. 5.
    B. P. Makogon, M. M. Pavelko, T. A. Bondarenko, S. I. Klenin, I. L. Povkh, A. I. Toryanik, V. I. Kurlyankina, V. A. Molotkov, and Yu. F. Ivanyuta, The effect of the conformation of macromolecules on the hydrodynamic efficiency of polyacrylamide, Inzh.-Fiz. Zh., 51, No. 1, 47–52 (1986).Google Scholar
  6. 6.
    I. L. Povkh and A. B. Stupin, An experimental study of the turbulent flow of aqueous polymer solutions in a tube, Inzh.-Fiz. Zh., 22, No. 1, 59–65 (1972).Google Scholar
  7. 7.
    G. V. Nesyn, V. N. Manzhai, and A. V. Ilyushnikov, Industrial synthesis and evaluation of the hydrodynamic efficiency of potential agents for decreasing resistance in petroleum pipelines, Inzh.-Fiz. Zh., 76, No. 3, 142–146 (2003).Google Scholar
  8. 8.
    G. N. Pozdnyshev, Stabilization and Breakdown of Oil Emulsions [in Russian], Nedra, Moscow (1982).Google Scholar
  9. 9.
    V. A. Myagchenkov and S. V. Chichkanov, Influence of the molecular parameters of polyacrylamide on the mass transfer in turbulent water flows in capillaries, Inzh.-Fiz. Zh., 78, No. 3, 96–103 (2005).Google Scholar
  10. 10.
    V. A. Myagchenkov, S. V. Chichkanov, V. E. Proskurina, and A. V. Myagchenkov, Dependence of the magnitude of the Thoms effect on concentration and molecular parameters of the cationic copolymer of acrylamide, Zh. Prikl. Khim., 75, Issue 9, 1517–1520 (2002).Google Scholar
  11. 11.
    V. A. Myagchenkov, O. V. Krikunenko, and F. I. Churikov, Ultrasonic Destruction of Water-Soluble Copolymers [in Russian], Kazansk. Gos. Tekhnol. Univ., Kazan’ (1998).Google Scholar
  12. 12.
    V. A. Myagchenkov, O. V. Krikunenko, O. A. Yunusov, V. N. Ushakova, A. I. Lelyukh, and E. F. Panarin, Ultrasonic destruction of N-polyvinylpyrrolidone, Dokl. Akad. Nauk SSSR, 324, No. 4, 826–829 (1992).Google Scholar
  13. 13.
    J. Klein and K. D. Conrad, Molecular weight determination of poly(acrylamide) and poly(acrylamide-co-sodium acrylate) Macromol. Chem., 179, 1635–1638 (1978).CrossRefGoogle Scholar
  14. 14.
    E. M. Greshilov, A. V. Evtushenko, L. M. Lyamshev, and N. L. Shirokova, Some peculiarities of the effect of polymer additives on wall turbulence, Inzh.-Fiz. Zh., 25, No. 6, 999–1005 (1973).Google Scholar
  15. 15.
    P. S. Virk and T. Suraiya, Mass transfer at maximum drag reduction, in: Drag Reduction, Proc. 2nd Int. Conf. Cranfield, 31 Aug.–2 Sept. 1977, Cranfield (1977), G3/41-G3/56.Google Scholar
  16. 16.
    G. L. Donohue, W. G. Tiederman, and M. M. Reischman, Flow visualization of the near-wall region in a drag-reducing channel flow, J. Fluid Mech., 56, 559–575 (1972).CrossRefGoogle Scholar
  17. 17.
    V. A. Mjagchenkov, S. V. Chichkanov, and A. V. Mjagchenkov, The effect of ionic strength on the efficiency of drag reduction by ionogenic acrylamide copolymers in turbulent aqueous flows, Georesources, No. 1(8), 27–31 (2004).Google Scholar
  18. 18.
    V. A. Myagchenkov and S. Ya. Frenkel’, Compositional Inhomogeneity of Copolymers [in Russian], Khimiya, Leningrad (1988).Google Scholar
  19. 19.
    N. S. Berman and J. Yuen, The study of drag reduction using narrow fractions of Polyox, in: Drag Reduction, Proc. 2nd Int. Conf. Cranfield, 31 Aug.–2 Sept. 1977, Cranfield (1977), C1/1-C1/10.Google Scholar
  20. 20.
    P. Flory, Statistical Mechanics of Chain Molecules [Russian translation], Mir, Moscow (1971).Google Scholar
  21. 21.
    V. P. Tronov and A. V. Tronov, Treating of Different Types of Water for Using Them in the System of Bed-Pressure Maintenance [Russian translation], FÉN. Kazan’ (2001).Google Scholar
  22. 22.
    E. A. Bekturov and Z. Kh. Bakaulova, Synthetic Water-Soluble Polymers in Solutions [in Russian], Nauka KazSSR, Alma-Ata (1981).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • S. V. Chichkanov
    • 1
  • A. I. Shamsullin
    • 1
  • V. A. Myagchenkov
    • 1
  1. 1.Kazan’ State Technological UniversityKazan’Russia

Personalised recommendations