Advertisement

A variation-gradient method for optimization of the shape of blade cascades

  • S. M. Aul’chenko
Article
  • 28 Downloads

Abstract

A variation-gradient method for solving the problem on optimization of the shape of blade cascades has been developed and tested. This method is based on calculation of the gradient of the functional of the optimization problem with the use of the parameters of a fluid flow varied relative to the design parameters determined from the system of variation gasdynamic equations. The efficiency of the indicated method was tested, as compared to the efficiency of the analogous gradient method in which the gradient of the functional of the optimization problem is calculated using the finite-difference method, in solving concrete problems on optimization of blade cascades. It is shown that the method proposed allows one to substantially decrease the time of determining the extremum of the indicated functional.

Keywords

Lift Coefficient Transonic Flow Solve Optimization Problem Blade Cascade Wing Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Yu. Stepanov, The Hydrodynamics of the Vane Cascades of Turbomachines [in Russian], Fizmatgiz, Moscow (1962).Google Scholar
  2. 2.
    G. Yu. Stepanov, Designing of plane channels and vane cascades of turbomachines with a nonseparation flow, Mekh. Zhidk. Gaza, No. 4, 30–42 (1993).Google Scholar
  3. 3.
    A. M. Elizarov, N. B. Il’inskii, and A. V. Potashev, Inverse Boundary-Value Problems of Aerohydrodynamics [in Russian], Nauka, Moscow (1994).MATHGoogle Scholar
  4. 4.
    E. A. Batyaev, V. B. Kurzin, and O. V. Chernysheva, An inverse aerodynamics problem of the double cascade of an axial fan, Teplofiz. Aéromekh., 5, No. 2, 167–174 (1998).Google Scholar
  5. 5.
    E. A. Batyaev, Aerodynamic designing of controllable twinned cascades of axial fans, Teplofiz. Aéromekh., 7, No. 2, 209–215 (2000).Google Scholar
  6. 6.
    Yu. A. Gryazin, S. G. Chernyi, S. V. Sharov, and P. A. Shashkin, On a method of numerically solving three-dimensional problems on the dynamics of an incompressible fluid, Dokl. Ross. Akad. Nauk, 353, No. 4, 478–483 (1997).Google Scholar
  7. 7.
    S. G. Cherny, S. V. Sharov, V. A. Skorospelov, and P. A. Turuk, Methods for three-dimensional flow computation in hydraulic turbines, Russ. J. Numer. Anal. Math. Model., 18, No. 2, 87–104 (2003).MATHCrossRefGoogle Scholar
  8. 8.
    V. A. Skorospelov, P. A. Turuk, S. M. Aulchenko, A. F. Latypov, Yu. V. Nikulichev, V. N. Lapin, D. V. Chirkov, and S. G. Cherny, Solution of the 3D problem of the aerohydrodynamic shape of turbine components, in: Proc. Int. Conf. on Methods of Aerophysics Research, 28 June–2 July 2004, Pt. 2, Inst. Theor. and Appl. Mech., Novosibirsk (2004), pp. 172–178.Google Scholar
  9. 9.
    V. A. Skorospelov, P. A. Turuk, S. M. Aul’chenko, A. F. Latypov, Yu. V. Nikulichev, V. N. Lapin, D. V. Chirkov, and S. G. Chernyi, Numerical optimization of the shape of the vane cascades of turbomachines, in: Ext. Abstracts of the 62nd Scientific-Engineering Conf. NGASU [in Russian], NGASU (Sibstrin), Novosibirsk (2005), P. 46.Google Scholar
  10. 10.
    H. Schlichting, Boundary-Layer Theory [Russian translation], Nauka, Moscow (1974).Google Scholar
  11. 11.
    S. M. Aul’chenko, A. F. Latypov, and Yu. V. Nikulichev, Experience in optimizing the aerodynamic characteristics of wing profiles in operation, Prikl. Mekh. Tekh. Fiz., 43, No. 1, 60–64 (2002).Google Scholar
  12. 12.
    F. P. Vasil’ev, Numerical Methods of Solving of Extremum Problems [in Russian], Nauka, Moscow (1988).Google Scholar
  13. 13.
    S. M. Aul’chenko and A. F. Latypov, On an approach to solving problems of optimization on the vane cascades of turbomachines, in: Proc. 7th All-Union Scientific Conf. “Boundary-Value Problems and Mathematical Simulation” [in Russian], NFI KemGU, Novokuznetsk (2004), pp. 3–4.Google Scholar
  14. 14.
    S. M. Aul’chenko, V. P. Zamuraev, A. P. Kalinina, and A. F. Latypov, Control of transonic flow past wing profiles by a local pulsed energy supply, Prikl. Mekh. Tekh. Fiz., 45, No. 5, 62–67 (2004).MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • S. M. Aul’chenko
    • 1
  1. 1.Institute of Theoretical and Applied MechanicsSiberian Branch of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations