Journal of Engineering Physics and Thermophysics

, Volume 79, Issue 6, pp 1117–1129 | Cite as

Experimental study of the friction stress and true gas content in upward bubbly flow in a vertical tube

  • O. N. Kashinckii
  • L. S. Timkin
  • R. S. Gorelik
  • P. D. Lobanov


An experimental study of the laminar, transient, and turbulent conditions of the flow of monodispersed gas-liquid mixtures with one-and two-millimeter bubbles has been made. Tube-parameter-averaged data on the development of friction stress on the wall and its pulsations have been obtained. The asymmetry parameter characterizing the nonuniformity of the friction stress distribution along the tube perimeter has been introduced. Flow conditions with a strong asymmetry have been revealed. The true gas content has been calculated by the Zuber-Hench formula [1]. For flow conditions with wall peaks of the gas content, the calculation data are in good agreement with the experimental data.


Reynolds Number Asymmetry Parameter Bubbly Column Bubble Diameter Friction Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Zuber and J. Hench, Rept. No. 62GL 100, General Electric Co., Schenectady, New York (1962).Google Scholar
  2. 2.
    M. Kh. Ibragimov, V. P. Bobkov, and N. A. Tychinskii, Investigation of the behavior of the gas phase in a turbulent water-gas mixture flow in channels, Teplofiz. Vys. Temp., 11, No. 5, 1051–1061 (1973).Google Scholar
  3. 3.
    A. Serizawa, Fluid-Dynamic Characteristics of Two-Phase Flow, Ph. D. Thesis, Kyoto University, Japan (1974).Google Scholar
  4. 4.
    Y. Sato, M. Sadatomi, and K. Sekoguchi, Momentum and heat transfer in two-phase bubbly flow, Int. J. Multiphase Flow, 7, 167–177 (1981).MATHCrossRefGoogle Scholar
  5. 5.
    S. K. Wang, S. J. Lee, O. C. Jones, and R. T. Lahey, 3D turbulence structure and phase distribution measurements in bubbly two-phase flows, Int. J. Multiphase Flow, 13, 327–343 (1987).CrossRefGoogle Scholar
  6. 6.
    N. V. Valukina and O. N. Kashinskii, Investigation of the friction stress on the wall in a monodisperse gas-liquid flow. Characteristic features of the gas-liquid moisture flow at low Reynolds numbers, Prikl. Mekh. Tekh. Fiz., No. 1, 93–98 (1979).Google Scholar
  7. 7.
    J. L. Achard and A. Cartellier, Local characteristics of upward laminar bubbly flows, PCH, 6, No. 5/6, 841–852 (1985).Google Scholar
  8. 8.
    O. N. Kashinsky, L. S. Timkin, and A. Cartellier, Experimental study of “laminar” bubble flow in vertical pipe, Exp. Fluids, No. 14, 308–314 (1993).Google Scholar
  9. 9.
    S. P. Antal, R. T. Lahey, and J. E. Flaherty, Analysis of phase distribution in fully developed laminar bubbly two-phase flow, Int. J. Multiphase Flow, 17, 635–652 (1991).CrossRefGoogle Scholar
  10. 10.
    Q. Song, R. Luo, X. Y. Yang, and Z. Wang, Phase distribution for upward laminar dilute bubbly flows with non-uniform bubble sizes in a vertical pipe, Int. J. Multiphase Flow, 27, 379–390 (2001).CrossRefGoogle Scholar
  11. 11.
    A. Cartellier, O. Kashinsky, and L. Timkin, Experimental characterization of pseudo-turbulence in Poiseuille bubbly flow, in: Proc. 2nd Int. Conf. on Multiphase Flow, 3–7 April 1995, Kyoto, Japan (1995), pp. IF1-27–IF1-33.Google Scholar
  12. 12.
    O. N. Kashinskii, R. S. Gorelik, and V. V. Randin, Hydrodynamics of vertical bubbly flows at low liquid phase velocities, in: Gas-Liquid Flows [in Russian], Novosibirsk, ITF SO AN SSSR (1990), pp. 44–59.Google Scholar
  13. 13.
    L. S. Timkin, N. Riviere, A. Cartellier, and O. N. Kashinsky, Performance of electrochemical probe for local void fraction measurements in air-water flows, Rev. Sci. Instrum., 74, No. 8, 3784–3786 (2003).CrossRefGoogle Scholar
  14. 14.
    N. Zuber and J. A. Findlay, Average volume concentration of phases in two-phase flow systems, J. Heat Transfer, No. 4, 453–467 (1965).Google Scholar
  15. 15.
    T. Hibiki and M. Ishii, Distribution parameter and drift velocity of drift-flux model in bubbly flow, Int. J. Heat Mass Transfer, 45, 707–721 (2002).MATHCrossRefGoogle Scholar
  16. 16.
    X. Shen, K. Mishima, and H. Nakamura, Two-phase phase distribution effect on drift-flux parameters in a vertical large diameter pipe, in: Proc. 3rd Int. Symp. on Two-Phase Flow Modeling and Experimentation, 22–24 September 2004, Pisa, Italy (2004), CD paper jp26.Google Scholar
  17. 17.
    S. Guet, G. Ooms, R. V. A. Oliemans, and R. F. Mudde, Bubble size effect on low liquid input drift-flux parameters, Chem. Eng. Sci., 59, 3315–3329 (2004).CrossRefGoogle Scholar
  18. 18.
    L. S. Timkin, Measurement of the local slip velocity of bubbles in an upward pseudoturbulent flow, Teplofiz. Aéromekh., 7, No. 1, 101–114 (2000).Google Scholar
  19. 19.
    V. E. Nakoryakov, A. P. Burdukov, O. N. Kashinskii, and P. I. Geshev, Electrodiffusion Method for Investigation of Local Characteristics of Turbulent Flows [in Russian], Novosibirsk, ITF SO AN SSSR (1986).Google Scholar
  20. 20.
    G. B. Wallis, The terminal speed of single drops or bubbles in an infinite medium, Int. J. Multiphase Flow, 1, 491–511 (1974).CrossRefMathSciNetGoogle Scholar
  21. 21.
    O. N. Kashinsky and L. S. Timkin, Fluctuating wall shear stress in upward pseudo-turbulent bubbly flow, in: G. P. Celata, P. D. Marco, and R. K. Shah (Eds.), in: Proc. Second Int. Symp. “Two-Phase Flow Modeling and Experimentation 1999,” 23–26 May 1999, Rome, Italy (1999), Vol. 2, pp. 1117–1121.Google Scholar
  22. 22.
    J. Laufer, The Structure of Turbulence in Fully Developed Pipe Flow, NACA, Rep. 1174 (1954), pp. 1–18.Google Scholar
  23. 23.
    L. S. Timkin, R. S. Gorelik, and P. D. Lobanov, Emergence of a single bubble in upward laminar flow: slip velocity and wall friction, Inzh.-Fiz. Zh., 78, No. 4, 129–135 (2005).Google Scholar
  24. 24.
    J. B. Joshi, V. S. Vitankar, A. A. Kulkarni, M. T. Dhotre, and K. Ekambara, Coherent flow structures in bubble column reactors, Chem. Eng. Sci., 57, 3157–3183 (2002).CrossRefGoogle Scholar
  25. 25.
    C. Garnier, M. Lance, and J. L. Marie, Measurement of local flow characteristics in buoyancy-driven bubbly flow at high void fraction, Exp. Thermal Fluid Sci., 26, 811–815 (2002).CrossRefGoogle Scholar
  26. 26.
    R. H. Davis and A. Acrivos, Sedimentation of noncolloidal particles at low Reynolds numbers, Ann. Rev. Fluid Mech., 17, 91–118 (1985).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • O. N. Kashinckii
    • 1
  • L. S. Timkin
    • 1
  • R. S. Gorelik
    • 1
  • P. D. Lobanov
    • 1
  1. 1.Institute of Thermal PhysicsSiberian Branch of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations