Journal of Engineering Physics and Thermophysics

, Volume 79, Issue 5, pp 839–846 | Cite as

Simulation and optimization of an organic-impurity oxidization reactor with a fixed porous bed and an electric heating element

  • N. N. Gnezdilov
  • K. V. Dobrego
  • I. M. Kozlov
  • E. S. Shmelev
Heat and Mass Transfer in Porous and Dispersive Media


A reactor for oxidization of low-caloric-value organic impurities contained in the air has been simulated. It comprises a tube with a recuperator, filled with a porous carcass mix, and includes a heating element. The influence of the heating-element placement, the heat losses through the upper cover of the reactor, the flow rate of a gas mixture, and the power of the heater on the maximum temperatures of the porous carcass and the gas and on the concentration of the incompletely oxidized organic impurity at the output of the reactor has been investigated. It is shown that, to burn an impurity completely, it will suffice to heat the gas δTe to 300 K. It has been established that it is best to place a heater at the level of the upper cut of the inner tube of the reactor.


Porous Medium Methane Concentration Mass Transfer Institute Luikov Heat Electric Heating Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Selecting the most appropriate HAP emission control technology, The Air Pollution Consultant, 3, Issue 2, 1–9 (1993).Google Scholar
  2. 2.
    Yu. Sh. Matros, A. S. Noskov, and V. A. Chumachenko, Catalytic Decontamination of Industrial Waste Gases [in Russian], Nauka, Novosibirsk (1991), pp. 22–37.Google Scholar
  3. 3.
    F. Contarin, A. V. Saveliev, A. A. Fridman, and L. A. Kennedy, A reciprocal flow filtration combustor with embedded heat exchangers: Numerical study, Int. J. Heat Mass Transfer, 46, 949–961 (2003).MATHCrossRefGoogle Scholar
  4. 4.
    L. A. Kennedy, A. A. Fridman, and A. V. Saveliev, Superadiabatic combustion in porous media: Wave propagation, instabilities, new type of chemical reactor, Int. J. Fluid Mech. Res., 22, 1–26 (1995).MathSciNetGoogle Scholar
  5. 5.
    J. G. Hoffman, R. Echigo, H. Yoshida, and S. Tada, Experimental study on combustion in a porous media with a reciprocating flow system, Combust. Flame, 111, 32–46 (1997).CrossRefGoogle Scholar
  6. 6.
    W. D. Binder and R. J. Martin, The destruction of air toxic emissions by flameless thermal oxidation, Incineration Conf., Knoxville, Tennessee (1993).Google Scholar
  7. 7.
    T. Takeno and K. Sato, An analytical study on excess enthalpy flames, Combust. Sci. Technol., 20, 73 (1979).Google Scholar
  8. 8.
    K. V. Dobrego and S. A. Zhdanok, Physics of Filtrational Combustion of Gases [in Russian], A. V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, Minsk (2002).Google Scholar
  9. 9.
    K. Hanamura, R. Echigo, and S. Zhdanok, Superadiabatic combustion in a porous medium, Int. J. Heat Mass Transfer, 36, No. 13, 3201–3209 (1993).CrossRefGoogle Scholar
  10. 10.
    M. K. Drayton, A. V. Saveliev, L. A. Kennedy, A. A. Fridman, and Y. E. Li, Superadiabatic partial oxidation of methane in reciprocal and counterflow porous burners, in: Proc. 27th Int. Symp. on Combustion, Pittsburgh, PA (1998), pp. 1361–1367.Google Scholar
  11. 11.
    A. N. Migoun A. N., A. P. Chernukho, and S. A. Zhdanok, Numerical modeling of reverse-flow catalytic reactor for methane partial oxidation, in: Proc. Vth Int. School-Seminar “Nonequilibrium Processes and Their Applications,” Minsk (2000), pp. 131–135.Google Scholar
  12. 12.
  13. 13.
  14. 14.
    K. V. Dobrego, N. N. Gnesdilov, I. M. Kozlov, V. I. Bubnovich, and H. A. Gonzalez, Numerical investigation of the new regenerator-recuperator scheme of VOC oxidizer, Int. J. Heat Mass Transfer, 48, 4695–4703 (2005).CrossRefGoogle Scholar
  15. 15.
    K. V. Dobrego, I. M. Kozlov, S. A. Zhdanok, and N. N. Gnesdilov, Modeling of diffusion filtration combustion radiative burner, Int. J. Heat Mass Transfer, 44, 3265–3272 (2001).MATHCrossRefGoogle Scholar
  16. 16.
    K. V. Dobrego, I. M. Kozlov, N. N. Gnesdilov, and V. V. Vasiliev, 2D Burner — Software Package for Gas Filtration Combustion Systems Simulation and Gas Non-Steady Flames Simulation, Preprint No. 1 of the A. V. Luikov Heat and Mass Transfer Institute, Minsk (2004).Google Scholar
  17. 17.
    V. Ya. Basevich, A. A. Belyaev, and S. M. Frolov, “Global” kinetic mechanisms for calculation of turbulent reacting flows. Pt. 1. Basic chemical process of heat release, Khim. Fiz., 17, No. 9, 117–129 (1998).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • N. N. Gnezdilov
    • 1
  • K. V. Dobrego
    • 1
  • I. M. Kozlov
    • 1
  • E. S. Shmelev
    • 1
  1. 1.A. V. Luikov Heat and Mass Transfer InstituteNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations