Advertisement

Transient thermal behavior of multilayer media: Modeling and application to stratified moulds

  • M. Lazard
Article

Abstract

Transient and steady-state heat transfer in multilayer media is investigated by the thermal quadrupole method. A semi-analytical solution is proposed for the cases of layers parallel or orthogonal to the main heat-flux direction. The principal application is the study of the effect of the brazing metal used in stratified steel moulds.

Keywords

Heat Flux Thermal Resistance Steel Layer Multilayer Medium Principal Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Degiovanni, Conduction dans un mur multicouche avec sources: Extension de la notion de quadripôle, Int. J. Heat Mass Transfer, 31, 553–557 (1988).CrossRefGoogle Scholar
  2. 2.
    D. Maillet et al., Thermal Quadrupoles: An Efficient Method for Solving the Heat Equation through Integral Transforms, John Wiley and Sons, New York (2000).Google Scholar
  3. 3.
    C. Moyne and A. Degiovanni, Représentation non locale d’un milieu hétérogène en diffusion pure, Int. J. Thermal Sci., 42, 931–942 (2002).CrossRefGoogle Scholar
  4. 4.
    O. Fudym, J. C. Batsale, and D. Lecomte, Heat diffusion at the boundary of stratified media. Homogenized temperature field and thermal constriction, Int. J. Heat Mass Transfer, 47, 2437–2447 (2004).CrossRefGoogle Scholar
  5. 5.
    M. Lazard, S. André, and D. Maillet, Transient coupled radiative conductive heat transfer in a gray planar medium with anisotropic scattering, J. Quant. Spectrosc. Radiat. Transfer, 61, 23–33 (2001).CrossRefGoogle Scholar
  6. 6.
    H. Stehfest, Remarks on Algorithm 368. Numerical Inversion of Laplace Transform, Com. A.C.M. 624, 13, 1970, pp. 47–49.Google Scholar
  7. 7.
    F. R. De Hoog et al., Quotient difference method with accelerated convergence for the continued fraction expansion, SIAM J. Sci. Stat. Comput., 3, 357–366 (1982).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • M. Lazard
    • 1
  1. 1.GIP InSIC Institut Supérieur d’Ingénierie de la ConceptionSaint Dié des VosgesFrance

Personalised recommendations