Skip to main content
Log in

Shock-wave flow regimes at entry into the diffuser of a hypersonic ramjet engine: Influence of physical properties of the gas medium

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Abstract

The physical aspects of the effective-adiabatic-exponent model making it possible to decompose the total problem on modeling of high-velocity gas flows into individual subproblems (“physicochemical processes” and “ aeromechanics”), which ensures the creation of a universal and efficient computer complex divided into a number of independent units, have been analyzed. Shock-wave structures appearing at entry into the duct of a hypersonic aircraft have been investigated based on this methodology, and the influence of the physical properties of the gas medium in a wide range of variations of the effective adiabatic exponent has been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. M. Kovenya, G. A. Tarnavskii, and S. G. Chernyi, Use of the Method of Splitting in the Problems of Aerodynamics [in Russian], Nauka, Novosibirsk (1990).

    Google Scholar 

  2. G. A. Tarnavskii and S. I. Shpak, Decomposition of the methods and parallelizing of the algorithms of solution of the problems of aerodynamics and physical gas dynamics Programmirovanie, No. 6, 45–57 (2000).

  3. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  4. J. F. Clarke and M. McChesney, The Dynamics of Real Gases [Russian translation], Mir, Moscow (1967).

    Google Scholar 

  5. I. Prigogine and D. Kondepudi, Modern Thermodynamics. From Heat Engines to Dissipative Structures [Russian translation], Mir, Moscow (2002).

    Google Scholar 

  6. G. A. Tarnavskii and S. I. Shpak, An effective adiabatic index in the problems of a hypersonic real-gas flow past bodies, Teplofiz. Aéromekh., 8, No. 1, 41–58 (2001).

    Google Scholar 

  7. G. A. Tarnavskii and S. I. Shpak, Methods for calculation of an effective adiabatic index in computer simulation of hypersonic flows, Sib. Zh. Industr. Mat., 4, No. 1(7), 177–197 (2001).

    Google Scholar 

  8. G. A. Tarnavskii, Shock waves in gases with different adiabatic indices in front and behind the jump front, Vychisl. Metody Programmir., 3, No. 2, 129–143 (2002).

    Google Scholar 

  9. G. A. Tarnavskii and S. I. Shpak, Certain aspects of computer simulaiton of hypersonic flows: stability, nonuniqueness and bifurcation of numerical solution of the Navier-Stokes equations, Inzh.-Fiz. Zh., 74, No. 3, 125–132 (2001).

    Google Scholar 

  10. G. A. Tarnavskii, G. S. Khakimzyanov, and A. G. Tarnavskii, Modeling of hypersonic flows: influence of the starting conditions of the algorithm on the final solution in the vicinity of bifurcation points, Inzh.-Fiz. Zh., 76, No. 5, 54–60 (2003).

    Google Scholar 

  11. V. F. Volkov and G. A. Tarnavskii, Disturbance of symmetry and hysteresis of stationary and quasistationary solutions of the Euler and Navier-Stokes equations, Zh. Vych. Mat. Mat. Fiz., 41, No. 11, 1742–1750 (2001).

    MathSciNet  Google Scholar 

  12. N. B. Vargaftik, Handbook on Thermophysical Properties of Gases and Liquids [in Russian], Fizmatgiz, Moscow (1963).

    Google Scholar 

  13. Yu. B. Rumer and M. Sh. Ryvkin, Thermodynamics, Statistical Physics and Kinetics [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  14. G. I. Maikapar (Ed.), Non-Equilibrium Physico-Chemical Processes in Aerodynamics [in Russian], Mashinostroenie, Moscow (1972).

    Google Scholar 

  15. G. I. Mishin, A. P. Bedin, N. I. Yushchenkova, G. E. Skvortsov, and A. P. Ryazin, Anomalous relaxation and instability of shock waves in gases, Zh. Tekh. Fiz., 51, No. 11, 2315–2324 (1981).

    Google Scholar 

  16. R. W. Griffiths, R. J. Sandeman, and H. G. Hornung, The stability of shock waves in ionizing and dissociating gases, J. Phys. D: Appl. Phys., 8, 1681–1691 (1975).

    Google Scholar 

  17. T. A. Bormotova, V. V. Volodin, V. V. Golub, and I. N. Laskin, Thermal correction of the inlet diffuser of a hypersonic ramjet engine, Teplofiz. Vys. Temp., 41, No. 3, 472–475 (1975).

    Google Scholar 

  18. B. J. Gribben., K. J. Badcock, and B. E. Richards, Numerical study of shock-reflection hysteresis in a under-expanded jet, AIAA J., 38, No. 2, 275–288 (2000).

    Article  Google Scholar 

  19. H. G. Hornung and D. W. Schwendeman, Oblique shock reflection from an axis of symmetry: Shock dynamics and relation to the Guderley singularity, J. Fluid Mech., 438, 231–241 (2001).

    Article  MATH  Google Scholar 

  20. E. I. Vasil’ev and A. N. Kraiko, Numerical simulation of diffraction of weak shocks on the wedge under the conditions of the von Neumann paradox, in: Gas Dynamics. Selected Works [in Russian], Vol. 2, Fizmatlit, Moscow (201), pp. 235–250.

  21. A. R. Zakharian, M. Brio, J. K. Hunter, and G. M. Webb, The von Neumann paradox in weak shock reflection, J. Fluid Mech., 422, 193–202 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Kobayashi, T. Adachi, and T. Suzuki, Non-self-similar behavior of the von Neumann reflection, Phys. Fluids, 12, No 7, 1869–1880 (2000).

    Article  MathSciNet  Google Scholar 

  23. E. Timofeev, K. Takayama, and P. Voinovich, Regular-to-Mach reflection transition on the side surface of an inclined cylinder, Numer. Exp. Study. Repts. Inst. Fluid Sci. Tohoku Univ., 11, 1–22 (1999).

    Google Scholar 

  24. H. Li and G. Ben-Dor, Analytical and experimental investigations of the reflection of asymmetric shock waves in steady flows, J. Fluid Mech., 390, 25–43 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  25. J. D. Schmisseur and D. V. Gaitonde, Numerical investigation of strong crossing shock-wave turbulent boundary-layer interactions, AIAA J., 39, No. 9, 1742–1766 (2001).

    Google Scholar 

  26. L. F. Henderson, K. Takayama, and W. Y. Srutchfield, The persistence of regular reflection during strong shock diffraction over rigid ramps, J. Fluid Mech., 431, 273–449 (2001).

    Article  MATH  Google Scholar 

  27. B. Sjogreen and H. C. Yee, Grid convergence of high order methods for multiscale complex unsteady viscous compressible flows, J. Comput. Phys., 185, No. 1, 1–26 (2003).

    Article  MathSciNet  Google Scholar 

  28. G. A. Tarnavskii, Nonuniqueness of shock-wave structures in real gases: Mach and/or regular reflection, Vychisl. Metody Programmir., 4, No. 2, 258–277 (2003).

    Google Scholar 

  29. V. Ya. Borovoy, A. Yu. Chinilov, V. N. Gusev, and I. V. Struminskaya, Interference between a cylindrical bow shock and a plane oblique shock, AIAA J., 35, No. 11, 1721–1728 (1997).

    Google Scholar 

  30. G. A. Tarnavskii, Shock-wave structures in real gases: transition between different types of interaction of shocks in the region of solution nonuniqueness, Vychisl. Metody Programmir., 5, No. 2, 219–228 (2004).

    Google Scholar 

  31. G. A. Tarnavskii, Influence of flow angularities in a hypersonic ramjet diffuser on the formation of the shock-wave structure of a real gas flow, Inzh.-Fiz. Zh., 77, No. 3, 155–164 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 79, No. 4, pp. 69–80, July–August, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarnavskii, G.A. Shock-wave flow regimes at entry into the diffuser of a hypersonic ramjet engine: Influence of physical properties of the gas medium. J Eng Phys Thermophys 79, 699–711 (2006). https://doi.org/10.1007/s10891-006-0155-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-006-0155-5

Keywords

Navigation