Skip to main content

Advertisement

Log in

Comparison of the characteristics of a plasma generated by a d.c. arc plasmatron and a high-voltage a.c. plasmatron with rail-shaped electrodes (gliding arc) as applied to the synthesis of carbon nanomaterials

  • Processes of Transfer in a Low-Temperature Plasma
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Abstract

Comparative results of investigating the parameters of plasmas generated by atmospheric-pressure electric-arc plasmatrons of two types operating in the regime of simultaneous partial oxidation of hydrocarbons and their pyrolysis, have been given. It has been established by spectral and thermophysical measurements that the component composition of the plasma and its thermal characteristics at exit from a d.c. plasmatron significantly differ from the parameters of a plasmatron of the second type — an a.c. plasmatron with rail-shaped electrodes of the gliding-arc type. The temperature nonequilibrium and the presence of the carbon dimers C2 in the plasma (in the absence of the monomer C) generated by the rail-shaped-electrode plasmatron point to the fact that realization of the synthesis of fullerene-containing particles and, probably, particles containing nanotubes is, in principle, possible in reactors based on it, just as in more energy-intensive reactors with low-voltage d.c. arc plasmatrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Huczhko, H. Lange, and G. Cota-Sanchez, Plasma synthesis of nanocarbons, in: Proc. 7th Int. Conf. on Thermal Plasma Processing (TPP-7), France (2003), p. 617.

  2. M. Deminsky, V. Jivotov, B. Potapkin, and V. Rusanov, Plasma-assisted production of hydrogen from hydrocarbons, Pure Appl. Chem., 74, No. 3, 413–418 (2002).

    Google Scholar 

  3. É. G. Rakov, Methods for obtaining carbon nanotubes, Usp. Khim., 69, No. 1, 41–60 (2000).

    Google Scholar 

  4. A. V. Gorbunov, A. F. Bublievskii, A. L. Mossé, et al., Synthesis of carbon nanomaterials in pyrolusis of hydrocarbons in an atmospheric-pressure plasma-chemical arc reactor, in: Proc. III Int. Symp. “Fullerenes and Fulleren-like Structures in Condensed Media” [in Russian], ITMO, Minsk (2004), pp. 118–120.

    Google Scholar 

  5. A. V. Eletskii, A. F. Pal, N. N. Dzbanovsky, and N. V. Suetin, Plasma methods of carbon nanotube synthesis, in: Proc. 4th Int. Conf. on Plasma Physics and Plasma Technology, Minsk (2003), pp. 926–929.

  6. A. L. Mossé, A. V. Gorbunov, and E. M. Ermolaeva, Plasma Processing of Toxic Organic and Halogen-Containing Waste. Problems and Possibilities of Contamination [in Russian], Preprint No. 2 of the A. V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, Minsk (2003).

    Google Scholar 

  7. A. Czernichowski, GlidArc assisted preparation of the synthesis gas from natural and waste hydrocarbons gases, Oil Gas Sci. Technol. — Rev. IFP, 56, No. 2, 181–198 (2001).

    Google Scholar 

  8. M. F. Zhukov, E. I. Karpenko, V. S. Peregudov, et al., Plasma oil-free firing of boilers and stabilization of combustion of a coal-dust torch, in: Low-Temperature Plasma [in Russian], Vol. 16, Nauka, Novosibirsk (1995).

    Google Scholar 

  9. A. Czenichowski, Gliding arc. Applications to engineering and environment control, Pure Appl. Chem., 66, No. 6, 1301–1310 (1994).

    Google Scholar 

  10. F. Richard, J. M. Cormier, S. Pellerin, and J. Chapelle, Physical study of a gliding arc discharge, J. Appl. Phys., 79, No. 5, 2245–2250 (1996).

    Article  Google Scholar 

  11. K. Anazava, R. Shimotani, C. Manabe, H. Watanabe, and M. Shimizu, High-purity carbon nanotube synthesis method by an arc discharging in magnetic field, Appl. Phys. Lett., 81, No. 4, 739–741 (2002).

    Article  Google Scholar 

  12. J. L. Prebola, Jr., Performance of a Plasma Torch with Hydrocarbon Feedstocks for Use in Scramjet Combustion, Ms. Sci. Thesis, Virginia Polytechnical Inst., USA (1998).

    Google Scholar 

  13. S. Hofmann, B. Kleinsorge, and C. Ducati, Low-temperature plasma enhanced chemical vapor deposition of carbon nanotubes, Diamond Relat. Mater., 12, 1–6 (2003).

    Article  Google Scholar 

  14. S. D. Gallimore, L. S. Jacobsen, and W. F. O’Brien, Spectroscopic investigations of hydrocarbon-and nitrogen-based plasmas for supersonic ignition, AIAA Paper, 2002-5247 (2002).

  15. R. Yano, V. Contini, E. Plonjes, et al., Supersonic nonequilibrium plasma wind-tunnel measurements of shock modification and flow visualization, AIAA J., 38, No. 10, 1–8 (2000).

    Article  Google Scholar 

  16. M. A. Elliott, P. W. May, J. Petherbridge, et al., Optical emission spectroscopic studies of microwave enhanced diamond CVD using CH4/CO2 plasmas, Diamond Relat. Mater., 9, 311–316 (2000).

    Article  Google Scholar 

  17. J. Petherbridge, P. W. May, S. R. J. Pearce, et al., Molecular beam mass spectrometry investigations of low temperature diamond growth using CO2/CH4 plasmas, Diamond Relat. Mater., 10, 393–398 (2001).

    Article  Google Scholar 

  18. A. Ambrazyavichyus, Heat transfer in quenching of gases, in A. Zhukauskas (Ed.), Thermal Physics [in Russian], Vol. 15, Mosklas, Vilnius (1983).

    Google Scholar 

  19. A. F. Bublievskii, A. A. Galinovskii, A. V. Gorbunov, S. A. Zhdanok, L. I. Sharakhovskii, and A. L. Mossé, Plasma pyrolytic synthesis of carbon nanostructures in a mixture of nitrogen and propane-butane, Inzh.-Fiz. Zh., 79, No. 2, 3–9 (2006).

    Google Scholar 

  20. V. Chernyak, V. Naumov, and V. Yukhimenko, Spectroscopy of atmospheric pressure air jet plasma in transverse arc discharge, in: Proc. 12th Int. Congress on Plasma Physics, Nice, France (2004).

  21. J. E. Sansonetti and W. C. Martin, Handbook of Basic Atomic Spectroscopic Data, London (1995).

  22. J. R. Heath, Synthesis of C60 from small carbon clusters: a model based on experiment and theory, in: G. S. Hammond and V. J. Kuck (Eds.), Fullerenes: Synthesis, Properties and Chemistry of Large Carbon Clusters, ACS, Washington, DC (1991), pp. 1–23.

    Google Scholar 

  23. N. A. Poklonskii, O. N. Bubel’, E. F. Kislyakov, and S. A. Vyrko, A possible way for formation of fullerenes and carbon nanotubes, in: Ext. Abstr. of Papers presented at II Int. Symp. “Fullerenes and Fullerene-Like Structures in Condensed Media” [in Russian], ITMO, Minsk (2002), pp. 190–191.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 79, No. 4, pp. 3–11, July–August, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bublievskii, A.F., Galinovskii, A.A., Gorbunov, A.V. et al. Comparison of the characteristics of a plasma generated by a d.c. arc plasmatron and a high-voltage a.c. plasmatron with rail-shaped electrodes (gliding arc) as applied to the synthesis of carbon nanomaterials. J Eng Phys Thermophys 79, 629–638 (2006). https://doi.org/10.1007/s10891-006-0146-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-006-0146-6

Keywords

Navigation