On the inhomogeneity of the temperature fields in the cross section of thermal tubes

  • A. A. Kolousova
  • G. V. Kuznetsov


The problem on determination of the temperature field in the cross section of a thermal tube intersecting the zone of heat transfer to the outer surface of the tube has been solved with regard for the inhomogeneity of the boundary conditions on the outer surface of this tube and the materials from which the body and wick of the tube are made. It has been established that the temperature difference along the angular coordinate of nonmetal tubes with a very inhomogeneous heat transfer on their outer surface does not exceed 0.5 K, while this temperature difference in nonmetal tubes is more significant under adequate conditions.


Temperature Field Thermophysical Parameter Angular Coordinate Vapor Channel Evaporation Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. A. Alekseev and V. A. Aref’ev, Thermal Tubes for Cooling and Thermostatting of Radioelectronic Devices [in Russian], Énergiya, Moscow (1979).Google Scholar
  2. 2.
    L. L. Vasil’ev, Low-Temperature Tubes and Porous Heat Exchangers [in Russian], Nauka i Tekhnika, Minsk (1977).Google Scholar
  3. 3.
    M. N. Ivanovskii, V. P. Sorokin, B. A. Chulkov, and I. V. Yagodkin, Technological Principles of Thermal Tubes [in Russian], Atomizdat, Moscow (1980).Google Scholar
  4. 4.
    V. A. Volokhov, É. E. Khrychikov, and V. I. Kiselev, Systems of Cooling of Thermally Stressed Radioelectronic Devices [in Russian], Sovetskoe Radio, Moscow (1975).Google Scholar
  5. 5.
    L. L. Vasil’ev, V. V. Gil’, N. A. Zharikov, V. E. Zelenin, O. M. Syvorotka, and E. I. Uvarov, Testing of thermal tubes under space conditions, Inzh.-Fiz. Zh., 31, No. 6, 990–995 (1976).Google Scholar
  6. 6.
    L. L. Vasil’ev and S. V. Konev, Heat-Transfer Tubes [in Russian], Énergiya, Moscow (1972).Google Scholar
  7. 7.
    M. G. Semena, A. N. Gershuni, and V. K. Zaripov, Thermal Tubes with Metal-Fiber Capillary Structures [in Russian], Vishcha Shkola, Kiev (1984).Google Scholar
  8. 8.
    M. M. Levitan and T. L. Perel’man, Principles of the theory and calculation of thermal tubes, Zh. Tekh. Fiz., 44, No. 8, 1569–1591 (1974).Google Scholar
  9. 9.
    G. V. Kuznetsova and A. E. Sitnikov, Numerical simulation of heat and mass transfer in a low-temperature thermal tube, Inzh.-Fiz. Zh., 75, No. 4, 58–64 (2002).Google Scholar
  10. 10.
    V. M. Paskonov, V. I. Polezhaev, and L. A. Chudov, Numerical Simulation of Heat and Mass Transfer Processes [in Russian], Nauka, Moscow (1984).MATHGoogle Scholar
  11. 11.
    R. C. Reid, J. Prausnitz, and T. K. Sherwood, The Properties of Gases and Liquids [Russian translation], Khimiya, Leningrad (1982).Google Scholar
  12. 12.
    N. B. Vargaftik, Handbook on the Thermophysical Properties of Gases and Liquids [in Russian], Nauka, Moscow (1972).Google Scholar
  13. 13.
    I. V. Novitskii and I. A. Zograf, Estimation of Measurement Errors [in Russian], Énergoatomizdat, Leningrad (1991).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • A. A. Kolousova
    • 1
  • G. V. Kuznetsov
    • 1
  1. 1.Tomsk Polytechnical UniversityTomskRussia

Personalised recommendations