Journal of Engineering Physics and Thermophysics

, Volume 79, Issue 1, pp 118–124 | Cite as

Fundamental laws of the deformational behavior of erythrocytes in shear flow

  • N. N. Firsov
  • A. V. Priezzhev
  • N. V. Klimova
  • A. Yu. Tyurina


The dependences of the deformability parameter of erythrocytes on the shear stress in the Couette flow upon a change in their membrane rigidity or internal-content viscosity have been investigated by the diffractometric (ectacytometric) method. The results obtained suggest that the yield stress of cells measured by this method reflects the deformability of erythrocyte membranes, and the slope of the deformation curve rectified in the semilogarithmic coordinate system depends on the viscosity of the internal content of the cell. A parameter such as the limit deformation of erythrocytes is primarily determined by the viscosity of the membrane cytoskeleton.


Shear Flow Erythrocyte Membrane Couette Flow Deformation Curve Erythrocyte Deformability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Schmid-Schoenbein and R. Wells, Microscopy and viscosimetry of blood flowing under uniform shear rate (rheoscopy), J. Appl. Physiol., 26, No. 5, 674–678 (1969).Google Scholar
  2. 2.
    H. L. Reid, A. J. Barness, and P. L. Lock, A simple method for measuring erythrocyte deformability, J. Clin. Pathol., 29, No. 9, 855–858 (1976).Google Scholar
  3. 3.
    P. S. Lingard, Capillary pore rheology of erythrocytes, Microvasc. Res., 13, No. 1, 59–77 (1977).CrossRefGoogle Scholar
  4. 4.
    W. Corry and H. J. Meiselman, Centrifugal method of determining red cell deformability, Blood, 51, No. 4, 693–701 (1978).Google Scholar
  5. 5.
    M. Bessis and N. Mohandas, A diffractometric method for the measurement of cellular deformability, Blood Cells, 1, No. 3, 307–313 (1975).Google Scholar
  6. 6.
    M. Bessis and N. Mohandas, Laser diffraction pattern of sickle cells in fluid shear field, Blood Cells, 3, No. 2, 229–240 (1977).Google Scholar
  7. 7.
    D. R. Morris and A. R. Williams, Membrane fatigue as a parameter in shear induced lysis of erythrocytes, AIChE Symp. Ser., 74, No. 182, 27–30 (1978).Google Scholar
  8. 8.
    W. M. Phillips, Measuring the deformability of red blood cells, AIChE Symp. Ser., 74, No. 182, 46–55 (1978).Google Scholar
  9. 9.
    J. N. Smith, N. Mohandas, and S. Shohet, Variability among various mammals, Amer. J. Physiol., 235, No. 5, 725–730 (1979).Google Scholar
  10. 10.
    M. Morimoto and C. Feo, Effect des corps de Heinz produits in vitro sur la deformability des erythrocytes, Nouv. Rev. Franc. Hematol., 22, No. 1, 53–57 (1980).Google Scholar
  11. 11.
    Serdar Caglayal and R. Bayer, Effects of oxidative stress on erythrocyte deformability and fragility, Proc. SPIE, 2100, 182–189 (1994).Google Scholar
  12. 12.
    Y. Y. Bilto, M. A. Srour, and M. Juma, Exposure of human erythrocytes to oxygen radicals causes loss of deformability, increased osmotic fragility, lipids peroxidation and protein degradation, Biorheology, 36, Nos. 1–2, 97–98 (1999).Google Scholar
  13. 13.
    L. Dintenfass, Considerations of the internal viscosity of red cell and its effects on the viscosity of whole blood, Angiology, 13, 333–338 (1962).Google Scholar
  14. 14.
    K. Tadano, J. Hellums, E. C. Lynch, E. J. Peck, and C. P. Alfrey, The effect of ATP-deflection on the response of erythrocytes to shear-stress, in: M. Bessis et al. (Eds.), Red Cell Rheology, Berlin (1978), pp. 172–174.Google Scholar
  15. 15.
    T. M. Fischer, M. Stohr, and H. Schmid-Schoenbein, Red blood cell microrheology, AIChE Symp. Ser., 74, No. 182, 38–45 (1978).Google Scholar
  16. 16.
    R. Bayer, B. Schauf, and B. Gunther, Erythrocyte shape analysis by means of laser diffraction, Proc. SPIE, 2100, 248–255 (1992).Google Scholar
  17. 17.
    T. M. Fischer and H. Schmid-Schoenbein, Tank tread motion of red cell membranes in viscometric flow, Blood Cells, 3, No. 2, 351–365 (1977).Google Scholar
  18. 18.
    A. Di Stasi, M. M. T. Forte, M. Giorgi, and P. Grimaldi, Interactions of skeletal proteins with red blood cell membrane, Ann. Ist. Super Sanita, 24, No. 4, 591–598 (1988).Google Scholar
  19. 19.
    T. M. Fisher, Role of spectrin in cross bonding of the red cell membrane, Blood Cells, 13, No. 3, 377–394 (1988).Google Scholar
  20. 20.
    T. M. Fisher and B. S. Bull, The cross bonding phenomenon and studies of red cell deformability, Commentary Blood Cell, 13, No. 3, 395–396 (1988).Google Scholar
  21. 21.
    I. I. Gol’dberg, Mechanical Behavior of Polymer Materials [in Russian], Khimiya, Moscow (1970).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • N. N. Firsov
    • 1
  • A. V. Priezzhev
    • 2
  • N. V. Klimova
    • 1
  • A. Yu. Tyurina
    • 2
  1. 1.Russian State Medical UniversityMoscowRussia
  2. 2.M. V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations