Advertisement

Kinetic models of combustion of kerosene and its components

  • G. Ya. Gerasimov
  • S. A. Losev
Article

Abstract

Modern investigations on creation of kinetic models of combustion of hydrocarbons entering into the composition of kerosene and kerosene as a whole have been analyzed. Certain recommendations on application of these models to calculation of actual gasdynamic flows have been given.

Keywords

Combustion Statistical Physic Hydrocarbon Kinetic Model Kerosene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    L. Maurice and T. Edwards, Liquid hydrocarbon fuels for hypersonic propulsion, in: E. T. Curran and S. N. B. Murthy (Eds.), Scramjet Propulsion Progr. Astronaut. Aeronaut, Reston, AIAA, 189, 757–822 (2000).Google Scholar
  2. 2.
    G. Ya. Gerasimov, S. A. Losev, and V. N. Makarov, AVOGADRO program: Environmental problems of heat engineering, Inzh.-Fiz. Zh., 69, No. 6, 921–926 (1998).Google Scholar
  3. 3.
    N. F. Dubovkin, V. G. Malanicheva, Yu. P. Massur, and E. P. Fedorov, Physicochemical and Service Properties of Jet Fuels. Handbook [in Russian], Khimiya, Moscow (1985).Google Scholar
  4. 4.
    S. Granata, T. Faravelli, and E. Ranzi, A wide range kinetic modeling study of the pyrolysis and combustion of naphthenes, Combust. Flame, 132, No. 4, 533–544 (2003).CrossRefGoogle Scholar
  5. 5.
    C. Vovelle, J.-L. Delfau, and M. Reuillon, Formation of aromatic hydrocarbons in decane and kerosene flames at reduced pressures, in: H. Bockhorn (Ed.), Soot Formation in Combustion, Mechanisms and Models, Springer Series in Chemical Physics, 59, 51–65, Springer, Berlin (1994).Google Scholar
  6. 6.
    A. A. Bratkov (Ed.), Chymmotology of Jet Fuels and Propellants [in Russian], Khimiya, Moscow (1987).Google Scholar
  7. 7.
    J. M. Simmie, Detailed chemical kinetic models for the combustion of hydrocarbon fuels, Progr. Energy Combust. Sci., 29, No. 6, 599–634 (2003).CrossRefGoogle Scholar
  8. 8.
    J. F. Griffiths, Reduced kinetic models and their application to practical combustion systems, Progr. Energy Combust. Sci., 21, No. 1, 25–107 (1995).CrossRefGoogle Scholar
  9. 9.
    R. Hilbert, F. Tap, H. El-Rabii, and D. Thevenin, Impact of detailed chemistry and transport models on turbulent combustion simulations, Progr. Energy Combust. Sci., 30, No. 1, 61–117 (2004).CrossRefGoogle Scholar
  10. 10.
    D. L. Baulch, C. J. Cobos, R. A. Cox, et al., Summary table of evaluated kinetic data for combustion modeling, Combust. Flame, 98, No. 1/2, 59–79 (1994).CrossRefGoogle Scholar
  11. 11.
    W. Wang and B. Rogg, Reduced kinetic mechanisms and their numerical treatment. I: Wet CO flames, Combust. Flame, 94, No. 3, 271–292 (1993).CrossRefGoogle Scholar
  12. 12.
    J. Warnatz, Rate constants of reactions with participation of particles containing C, H, and O atoms, in: W. C. Gardiner, Jr. (Ed.), Combustion Chemistry [Russian translation], Mir, Moscow (1988), pp. 209–314.Google Scholar
  13. 13.
    S. Kojima, Detailed modeling of n-butane autoignition chemistry, Combust. Flame, 99, No. 1, 87–136 (1994).CrossRefGoogle Scholar
  14. 14.
    J. Warnatz, Chemistry of high-temperature combustion of alkanes up to octane, in: Proc. 20th Symp. (Int.) on Combustion, The Combustion Institute, Pittsburgh (1984), pp. 845–856.Google Scholar
  15. 15.
    H. J. Curran, P. Gaffuri, W. J. Pitz, and C. K. Westbrook, A comprehensive modeling study of n-heptane oxidation, Combust. Flame, 114, No. 1/2, 149–177 (1998).CrossRefGoogle Scholar
  16. 16.
    H. J. Curran, P. Gaffuri, W. J. Pitz, and C. K. Westbrook, A comprehensive modeling study of iso-octane oxidation, Combust. Flame, 129, No. 3, 253–280 (2002).CrossRefGoogle Scholar
  17. 17.
    N. A. Slavinskaya and A. M. Starik, Kinetic mechanisms of ignition of iso-octane in mixture with air, Fiz. Goreniya Vzryva, 40, No. 1, 42–63 (2004).Google Scholar
  18. 18.
    G. Bikas and N. Peters, Kinetic modeling of n-decane combustion and autoignition, Combust. Flame, 126, No. 1/2, 1456–1475 (2001).CrossRefGoogle Scholar
  19. 19.
    A. Ristory, P. Dagaut, and M. Cathonnet, The oxidation of n-hexadecane: Experimental and detailed kinetic modeling, Combust. Flame, 125, No. 3, 1128–1137 (2001).CrossRefGoogle Scholar
  20. 20.
    W. J. Pitz, C. K. Westbrook, W. M. Proscia, and F. L. Dryer, A comprehensive chemical kinetic reaction mechanism for the oxidation of n-butane, in: Proc. 20th Symp. (Int.) on Combustion, The Combustion Institute, Pittsburgh (1984), pp. 831–843.Google Scholar
  21. 21.
    P. Dagaut, M. Reuillon, and M. Cathonnet, High-pressure oxidation of liquid fuels from low to high temperature, 1. n-Heptane and iso-octane, Combust. Sci. Technol., 95, No. 16, 233–260 (1994).Google Scholar
  22. 22.
    A. El-Bakali, J.-L. Delfau, and C. Vovelle, Kinetic modeling of a rich, atmospheric pressure, premixed n-heptane/O2/N2 flames, Combust. Flame, 118, No. 3, 381–398 (1999).CrossRefGoogle Scholar
  23. 23.
    H. K. Ciezki and G. Adomeit, Shock-tube investigation of self-ignition of n-heptane-air mixtures under engine relevant conditions, Combust. Flame, 93, No. 4, 421–433 (1993).CrossRefGoogle Scholar
  24. 24.
    R. Minetti, M. Carlier, M. Ribaucour, et al., A rapid compression machine investigation of oxidation and autoignition of n-heptane: Measurements and modeling, Combust. Flame, 102, No. 1/2, 298–309 (1995).CrossRefGoogle Scholar
  25. 25.
    O. Lemaire, M. Ribaaucour, M. Carlier, and R. Minetti, The production of benzene in low-temperature oxidation of cyclohexane, cyclohexene, and cyclohexa-1,3-diene, Combust. Flame, 127, No. 1/2, 1971–1980 (2001).CrossRefGoogle Scholar
  26. 26.
    S. Zeppieri, K. Brezinsky, and I. Glassman, Pyrolysis studies of methylcyclohexane and oxidation of methylcyclohexane and methylcyclohexane/toluene blends, Combust. Flame, 108, No. 3, 266–286 (1997).CrossRefGoogle Scholar
  27. 27.
    J. Warnatz, Generation and reduction of reaction mechanisms relevant to combustion in turbines, in: G. D. Roy, S. M. Frolov, and A. M. Starik (Eds.), Combustion and Atmospheric Pollution, Torus Press, Moscow (2003), pp. 9–17.Google Scholar
  28. 28.
    H.-Y. Zhang and J. T. McKinnon, Elementary reactor modeling of high-temperature benzene combustion, Combust. Sci. Technol., 107, No. 46, 261–300 (1995).Google Scholar
  29. 29.
    P. Dagaut, G. Pengloan, and A. Ristory, Oxidation, ignition and combustion of toluene: Experimental and detailed chemical kinetic modeling, Phys. Chem. Chem. Phys., 4, No. 10, 1846–1854 (2002).CrossRefGoogle Scholar
  30. 30.
    P. Dagaut, A. Ristori, A. El-Bakali, and M. Cathonnet, The oxidation of n-propylbenzene: Experimental results and kinetic modeling, Fuel, 81, No. 2, 173–184 (2002).CrossRefGoogle Scholar
  31. 31.
    M. Frenklach, Reaction mechanism of soot formation in flames, Phys. Chem. Chem. Phys., 4, No. 11, 2028–2037 (2002).CrossRefGoogle Scholar
  32. 32.
    H. Richter and J. B. Howard, Formation of polycyclic aromatic hydrocarbons and their growth to soot — A review of chemical reaction pathways, Progr. Energy Combust. Sci., 26, No. 46, 565–608 (2000).CrossRefGoogle Scholar
  33. 33.
    C. Venkat, K. Brezinsky, and I. Glassman, High-temperature oxidation of aromatic hydrocarbons, in: Proc. 19th Symp. (Int.) on Combustion, The Combustion Institute, Pittsburgh (1982), pp. 143–152.Google Scholar
  34. 34.
    A. Tregrossi, A. Ciajolo, and R. Barbella, The combustion of benzene in rich premixed flames at atmospheric pressure, Combust. Flame, 117, No. 3, 553–561 (1999).CrossRefGoogle Scholar
  35. 35.
    C. Gueret, M. Cathonnet, J.-C. Boettner, and F. Gaillard, Experimental study and modeling of kerosene oxidation in a jet-stirred flow reactor, in: Proc. 23rd Symp. (Int.) on Combustion, The Combustion Institute, Pittsburgh (1990), pp. 211–216.Google Scholar
  36. 36.
    C. Bales-Gueret, M. Cathonnet, J.-C. Boettner, and F. Gaillard, Experimental study and kinetic modeling of higher hydrocarbon oxidation in a jet-stirred flow reactor, Energy & Fuels, 6, No. 2, 189–194 (1992).CrossRefGoogle Scholar
  37. 37.
    A. Violi, S. Yan, E. G. Eddings, et al., Experimental formulation and kinetic model for JP-8 surrogate mixtures, Combust. Sci. Technol., 174, No. 1112, 399–417 (2002).CrossRefGoogle Scholar
  38. 38.
    S. C. Li, B. Varatharajan, and F. A. Williams, The chemistry of JP-10 ignition, AIAA J., 39, No. 12, 2351–2356 (2001).CrossRefGoogle Scholar
  39. 39.
    D. F. Davidson, D. C. Horning, J. T. Hebron, et al., Shock tube measurements of JP-10 ignition, Proc. Combust. Inst., 28, No. 10, 1687–1692 (2000).CrossRefGoogle Scholar
  40. 40.
    Z. Wen, S. Yun, M. J. Thomson, and M. F. Lightstone, Modeling of soot formation in turbulent kerosene/air jet diffusion flames, Combust. Flame, 135, No. 3, 323–340 (2003).CrossRefGoogle Scholar
  41. 41.
    P. Dagaut, On the kinetics of hydrocarbons oxidation from natural gas to kerosene and diesel fuel, Phys. Chem. Chem. Phys., 4, No. 11, 2079–2094 (2002).CrossRefGoogle Scholar
  42. 42.
    G. Ya. Gerasimov and V. N. Makarov, Analysis of the mechanism of a complex chemical action by an example of radiation-chemical cleaning of gases from harmful impurities, Khim. Fiz., 16, No. 1, 89–99 (1997).Google Scholar
  43. 43.
    B. Bhattacharjee, D. A. Schwer, P. I. Barton, et al., Optimally-reduced kinetic models: Reaction elimination in large-scale kinetic mechanisms, Combust. Flame, 135, No. 3, 191–208 (2003).CrossRefGoogle Scholar
  44. 44.
    N. Peters, G. Paczko, R. Seiser, and K. Seshadri, Temperature cross-over and non-thermal runaway at two-stage ignition of n-heptane, Combust. Flame, 128, No. 1/2, 38–59 (2002).CrossRefGoogle Scholar
  45. 45.
    S. Tanaka, F. Ayala, and J. C. Keck, A reduced chemical model for HCCI combustion of primary reference fuels in a rapid compression machine, Combust. Flame, 133, No. 4, 467–481 (2003).CrossRefGoogle Scholar
  46. 46.
    H. Kim, S. Pae, and K. Min, Reduced chemical kinetic model for the ignition delay of hydrocarbon fuels and DME, Combust. Sci. Technol., 174, No. 8, 221–238 (2002).CrossRefGoogle Scholar
  47. 47.
    U. Maas and S. B. Pope, Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space, Combust. Flame, 88, No. 3–4, 239–264 (1992).CrossRefGoogle Scholar
  48. 48.
    J. Nafe and U. Maas, Hierarchical generation of ILDMs of higher hydrocarbons, Combust. Flame, 135, No. 1/2, 17–26 (2003).CrossRefGoogle Scholar
  49. 49.
    S. H. Lam and D. A. Goussis, The CSP method for simplifying kinetics, Int. J. Chem. Kinet., 26, No. 4, 461–486 (1994).CrossRefGoogle Scholar
  50. 50.
    C. K. Westbrook and F. L. Dryer, Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames, Combust. Sci. Technol., 27, No. 1/2, 31–43 (1981).Google Scholar
  51. 51.
    V. Ya. Basevich, A. A. Belyaev, and S. M. Frolov, “Global” kinetic mechanisms for calculation of turbulent reacting flows. Pt. 1. Principal chemical process of heat release, Khim. Fiz., 19, No. 9, 112–128 (1998).Google Scholar
  52. 52.
    D. J. Hautman, F. L. Dryer, K. P. Schug, and I. Glassman, A multiple-step overall kinetic mechanism for the oxidation of hydrocarbons, Combust. Sci. Technol., 25, No. 5/6, 219–235 (1981).Google Scholar
  53. 53.
    G. Ya. Gerasimov, N. A. Zhegul’skaya, and I. B. Rozhdestvenskii, Thermodynamic and thermophysical properties of the products of combustion and conversion of organic fuels, Mat. Modelir., 10, No. 8, 3–16 (1998).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • G. Ya. Gerasimov
    • 1
  • S. A. Losev
    • 1
  1. 1.M. V. Lomonosov Institute of Mechanics at Moscow State UniversityMoscowRussia

Personalised recommendations