Journal of Engineering Physics and Thermophysics

, Volume 78, Issue 5, pp 885–891 | Cite as

Shear strength of epoxypolysulfone glass-reinforced plastics in a wide range of loading rates

  • Yu. A. Gorbatkina
  • V. I. Solodilov
  • A. M. Kuperman
  • D. V. Pavlovskii
  • M. V. Shustov


The shear strength of unidirectional epoxypolysulfone glass-reinforced plastics in the range of six decimal orders of loading rates has been measured. ED-22 epoxydiane resin (analog of DGEBA) modified by PSK-1 aromatic polysulfone served as a matrix. It has been shown that the strength values linearly increase with increasing logarithm of the loading rate; the sensitivity of composites to the rate of application of a force increases with increasing quantity of PSK-1 introduced into the matrix, and the fracture mechanism of composites is the thermofluctuation one. The laws revealed do not differ from those established by us earlier for glass-reinforced plastics based on epoxy binders modified by active diluents.


Statistical Physic Epoxy Shear Strength Fracture Mechanism Transport Phenomenon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. A. Gorbatkina, V. I. Solodilov, and V. A. Sushenkov, Shear strength of epoxy glass-reinforced plastic composites in a wide range of loading rates, Vysokomolek. Soed. A, 46, No. 6, 1–7 (2004).Google Scholar
  2. 2.
    Min Hvun Sung and Kim Sung Chul, Fracture toughness of polysulfone/epoxy semi-IPN with morphology spectrum, Polym. Bull., 42, No. 4, 221–227 (1999).Google Scholar
  3. 3.
    C. D. Breach, M. J. Folkes, and J. M. Barton, Physical ageing an epoxy resin/polyethersulphone blend, Polymer, 33, No. 14, 3080–3082 (1992).CrossRefGoogle Scholar
  4. 4.
    B.-G. Min, Z. H. Stachurski, and J. H. Hodgkin, Microstructural effects and the toughening of thermoplastic modified epoxy resin, J. Appl. Polym. Sci., 50, No. 9, 1511–1518 (1993).CrossRefGoogle Scholar
  5. 5.
    ASTM D 2344-67.Google Scholar
  6. 6.
    V. I. Kostrov, A. A. Rybin, and Yu. P. Starostin, Spring impact machine for plastics, Zavod. Lab., No. 11, 1057–1058 (1979).Google Scholar
  7. 7.
    A. V. Antonov, É. S. Zelenskii, A. M. Kuperman, O. V. Lebedeva, and A. A. Rybin, Behavior of reinforced plastics based on polysulfone matrix under shock loading, Mekh. Kompozit. Mater., 34, No. 1, 17–27 (1998).Google Scholar
  8. 8.
    V. V. Vasil’ev and Yu. M. Tarnapol’skii, Composite Materials [in Russian], Mashinostroenie, Moscow (1990).Google Scholar
  9. 9.
    D. B. Bologov, A. M. Kuperman, and M. G. Karpman, Influence of the epoxy binder modification by nitrile rubber on the physico-mechanical properties of unidirectional carbon-reinforced plastics, Mekh. Kompozit. Mater. Konstruktsii, 5, No. 4, 33–41 (1999).Google Scholar
  10. 10.
    Yu. A. Gorbatkina, Adhesion Strength in Polymer-Fiber Systems [in Russian], Khimiya, Moscow (1987).Google Scholar
  11. 11.
    Yu. A. Gorbatkina, Adhesive Strength of Fiber-Polymer Systems, Ellis Horwood, New York-London (1992).Google Scholar
  12. 12.
    V. P. Regel’, A. I. Slutsker, and É. E. Tomashevskii, Kinetic Nature of the Strength of Solids [in Russian], Nauka, Moscow (1974).Google Scholar
  13. 13.
    M. N. Bokshitskii, Long-Term Strength [in Russian], Khimiya, Moscow (1978).Google Scholar
  14. 14.
    J. Baily, Attempt to correlate some tensile strength measurements on glass, Glass Ind., 20, No. 1, 26 (1939).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Yu. A. Gorbatkina
    • 1
  • V. I. Solodilov
    • 1
  • A. M. Kuperman
    • 1
  • D. V. Pavlovskii
    • 1
  • M. V. Shustov
    • 2
  1. 1.N. N. Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscow
  2. 2.D. I. Mendeleev Russian Chemical-Technological UniversityMoscow

Personalised recommendations