Advertisement

Journal of Engineering Physics and Thermophysics

, Volume 78, Issue 5, pp 844–852 | Cite as

Mesomorphism in polymers and its mechanotropic variety for polyethylene in binary polymer blends based on it

  • E. M. Antipov
  • J. W. M. Noordermeer
Article

Abstract

For the first time, an attempt has been made to illustrate the diversity of different forms of mesomorphism in flexible-and rigid-chain linear polymers whose macromolecules do not contain mesogenic groups. The emphasis has been on description of new structural varieties that are equilibrium mesophases from the thermodynamic viewpoint. Concrete examples of unusual two-dimensional and one-dimensional forms of ordering, recently found by the authors for a number of high-molecular-weight compounds, have been given.

Keywords

Polymer Statistical Physic Polyethylene Macromolecule Structural Variety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Wunderlich, M. Moeller, J. Grebowicz, and H. Bauer, Conformational motion and disorder in low-and high-molecular mass crystals, Adv. Polym. Sci., 87, Nos. 1–2, 1–75 (1988).Google Scholar
  2. 2.
    E. M. Antipov, V. G. Kulichikhin, and N. A. Platé, Mesophase structure of some flexible chain polymers, Polym. Eng. Sci., 32, No. 17, 1188–1193 (1992).CrossRefGoogle Scholar
  3. 3.
    B. Wunderlich, A classification of molecules, phases, and transitions as recognized by thermal analysis, Thermochimica Acta, 340/341, 37–52 (1999).CrossRefGoogle Scholar
  4. 4.
    E. M. Antipov, S. D. Arthamonova, I. A. Volegova, Yu. K. Godovsky, M. Stamm, and E. W. Fischer, Temperature evolution of the structure of liquid-crystalline main-chain copolyesters, in: Liquid-Crystalline Polymer Systems, Am. Chem. Soc., Washington (1996), Ch. 17, pp. 259–303.Google Scholar
  5. 5.
    E. M. Antipov, M. Stamm, and E. W. Fischer, X-ray analysis of the structure of a thermotropic main-chain liquid-crystalline copolyester, J. Mater. Sci., 29, 328–337 (1994).CrossRefGoogle Scholar
  6. 6.
    E. M. Antipov, M. Stamm, V. Abetz, and E. W. Fischer, Temperature evolution of the structure of a thermotropic main-chain liquid-crystalline copolyester, Acta Polymerica, 45, No. 3, 196–203 (1994).CrossRefGoogle Scholar
  7. 7.
    E. M. Antipov, M. Stamm, V. Abetz, and E. W. Fischer, The effect of molecular weight on the structure and temperature behavior of a thermotropic main-chain liquid-crystalline copolyester, Colloid. Polym. Sci., 273, 23–31 (1995).Google Scholar
  8. 8.
    E. M. Antipov, I. A. Volegova, Yu. K. Godovsky, M. Stamm, and E. W. Fischer, Comparative analysis of the structure of two thermotropic LC copolyesters, J. Macromol. Sci.-Phys., B35, No. 3–4, 591–614 (1996).Google Scholar
  9. 9.
    A. A. Levtchenko, E. M. Antipov, N. A. Platé, and M. Stamm, Comparative analysis of structure and temperature behaviour of two copolyamides — regular KEVLAR and statistical ARMOS, Macromol. Chem. Macromol. Symp., 146, 145–151 (2000).Google Scholar
  10. 10.
    N. A. Platé and E. M. Antipov, Evolution of the structure of mesophase polyfluoroalkoxyphosphazenes and liquid-crystalline copolyesters, Macromol. Chem. Macromol. Symp., 98, 341–352, (1995).Google Scholar
  11. 11.
    E. M. Antipov, V. G. Kulichikhin, D. R. Tur, and N. A. Platé, The structure of the oriented polybistrifluoroethoxyphosphazene, Vysokomolek. Soed. A, 31, No. 11, 2385–2393 (1989).Google Scholar
  12. 12.
    V. G. Kulichikhin, E. M. Antipov, E. K. Borisenkova, and D. R. Tur, Mesophase state of polyorganophosphazenes, in: Liquid Crystalline and Mesophase Polymers, Ch. 8, New York (1993), pp. 258–297.Google Scholar
  13. 13.
    N. A. Platé, E. M. Antipov, and V. G. Kulichikhin, Mesophase structure and some properties of liquid-crystalline organoelement polymers, Macromol. Chem. Macromol. Symp., 27, 98–110 (1990).Google Scholar
  14. 14.
    N. A. Platé, V. G. Kulichikhin, and E. M. Antipov, Evolution of the structure of liquid-crystalline polymers and their blends, Vysokomolek. Soed. A, 35, No. 11, 1743–1754 (1993).Google Scholar
  15. 15.
    E. M. Antipov, E. K. Borisenkova, V. G. Kulichikhin, and N. A. Platé, Condis-crystal structure of flexible-chain polymers in polymer blends, Macromol. Chem. Macromol. Symp., 38, 275–285 (1990).Google Scholar
  16. 16.
    N. A. Platé, E. M. Antipov, V. G. Kulichikhin, and A. N. Zadorin, A mechanistic discussion of phase transitions in mesomorphic macromolecular compounds, Polymer Sci., 34, No. 6, 498–502 (1992).Google Scholar
  17. 17.
    E. V. Matukhina, N. N. Kuz’min, E. M. Antipov, B. V. Molchanov, A. I. Sbrodov, and G. G. Solovei, Special structural features of polyhexabis(trimethylsiloxy)disiloxane, Vysokomolek. Soed. B, 27, No. 12, 956–958 (1987).Google Scholar
  18. 18.
    E. M. Antipov, Yu. Ya. Podolsky, M. Stamm, E. W. Fischer, and N. A. Platé, Structure of 1,4-trans-polybutadienes synthesized with a new catalyst systems, J. Macromol. Sci.-Phys., B37, No. 4, 431–450 (1998).Google Scholar
  19. 19.
    E. Antipov, E. Mushina, M. Stamm, and E. Fischer, Structure of polybutadienes synthesized with a new catalytic system. 2. Blends of trans-and cis-1,4-polybutadiene, Macromol. Chem. Phys., 202, No. 1, 73–81 (2001).Google Scholar
  20. 20.
    E. Antipov, B. Schklyaruk, M. Stamm, and E. Fischer, Structure of polybutadienes synthesized with a new catalytic system. 3. Random copolymers of trans-1,4-and 1,2-polybutadiene, Macromol. Chem. Phys., 202, No. 1, 82–89 (2001).Google Scholar
  21. 21.
    E. Mushina, Yu. Podolsky, V. Frolov, Yu. Godovsky, I. Razumovskaya, and E. Antipov, Oligodienyl complexes of transient metals for polymerization of olefins and dienes, in: Organometallic Catalysts and Olefin Polymerization: Catalysts for a New Millenium, Springer-Verlag, Berlin (2001), pp. 327–334.Google Scholar
  22. 22.
    E. M. Antipov, V. M. Polikarpov, V. V. Volkov, and É. I. Frenkin, Structure of mesophase polyvinyl trimethylsilane, Vysokomolek. Soed. A, 33, No. 10, 2135–2140 (1991).Google Scholar
  23. 23.
    V. M. Polikarpov, E. E. Antipov, I. V. Razumovskaya, V. S. Khotimsky, and E. M. Antipov, Comparative study of the structure of membrane Si-and Ge-containing polymers, Polymer Sci., A44, No. 4, 577–587 (2002).Google Scholar
  24. 24.
    E. M. Antipov, S. D. Artamonova, I. V. Samusenko, and Z. Peizbauer, The effect of linearity perturbances in the polyethylene chain on the structure and physicomechanical properties of polyethylene, J. Macromol. Sci.-Phys., B30, No. 3, 257–267 (1991).Google Scholar
  25. 25.
    E. M. Antipov, Yu. V. Kaufman, A. V. Rebrov, M. Stamm, and E. Fischer, Structure of oriented compositions based on the simplest polyolefins obtained by in situ polymerization on a new catalytic system, Vysokomolek. Soed. A, 41, No. 6, 951–962 (1999).Google Scholar
  26. 26.
    V. G. Kulichikhin, M. Kh. Mirdzhanov, E. M. Antipov, Yu. I. Mitchenko, E. V. Popova, V. I. Kuzub, and S. A. Kuptsov, Structural-rheological processes in obtaining fibers from solutions of high-molecular-weight polyethylene, Vysokomolek. Soed. A, 32, No. 1, 77–83 (1990).Google Scholar
  27. 27.
    N. N. Kuzmin, E. V. Matukhina, E. M. Antipov, and N. A. Platé, Mesomorphic state in poly(4-methyl-l-pentene), Macromol. Chem. Rapid Commun., 13, 55–58 (1992).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • E. M. Antipov
    • 1
  • J. W. M. Noordermeer
    • 2
  1. 1.A. V. Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia
  2. 2.University of TwenteAE EnschedeThe Netherlands

Personalised recommendations