Journal of Engineering Physics and Thermophysics

, Volume 78, Issue 1, pp 109–114 | Cite as

Simulation of heating of biological tissues in the process of ultrahigh-frequency therapy

  • V. L. Dragun
  • S. M. Danilova-Tret’yak
  • S. A. Gubarev


A physicomathematical model of the temperature distribution over the surface and the bulk of a biological object (human palm) exposed to an ultrahigh-frequency electric field (40.68 MHz) for therapeutic purposes is presented. Various approaches to studying the propagation of laser radiation and radio-frequency electromagnetic waves in biological tissues are considered. The temperature distributions in various biotissues, obtained by numerical solution of the nonstationary heat problem, are presented.


Radiation Statistical Physic Temperature Distribution Laser Radiation Electromagnetic Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. S. Ulashchik and I. V. Lukomskii, General Physiotherapy [in Russian], Interpresservis, Knizhnyi Dom, Minsk (2003).Google Scholar
  2. 2.
    M. Hoque and P. Gandhi, Temperature distributions in the human leg for VLF-VHF exposures at the ANSI-recommended safety levels, IEEE Trans. Biomed. Eng., 35, No.6, 442–449 (1988).CrossRefPubMedGoogle Scholar
  3. 3.
    J. Y. Chen and P. Gandhi, Thermal implications of high SAR’s in the body extremities at the ANSI-recommended MF-VHF safety levels, IEEE Trans. Biomed. Eng., 35, No.6, 435–441 (1988).CrossRefPubMedGoogle Scholar
  4. 4.
    N. K. Uzunoglu and K. S. Nikita, Estimation of temperature distribution inside tissues heated by interstitial RF electrode hyperthermia systems, IEEE Trans. Biomed. Eng., 35, No.4, 250–255 (1988).CrossRefPubMedGoogle Scholar
  5. 5.
    H. H. Pennes, Analysis of tissue and arterial blood temperature in resting human forearm, J. Appl. Phys., 1, 93–122 (1948).Google Scholar
  6. 6.
    R. K. Jain, F. H. Gratham, and P. M. Gullino, Blood flow and heat transfer in Walker 256 mammary carcinoma, J. Nat. Cancer Inst., No. 62, 927–933 (1979).Google Scholar
  7. 7.
    W. Wulff, Discussion paper: Alternatives to the bio-heat transfer equation, Ann. N. Y. Acad. Sci., 335, 151–154 (1980).PubMedGoogle Scholar
  8. 8.
    S. Weinbaum and L. M. Jiji, A new simplified bioheat equation for the effect of blood flow on local average tissue temperature, J. Biomech. Eng., 107, 131–139 (1985).PubMedGoogle Scholar
  9. 9.
    National Council on Radiation Protection and Measurements. A Practical Guide to the Determination of Human Exposure to Radiofrequency Fields. NCRP Report No. 119: Bethseda, MD (1993).Google Scholar
  10. 10. Anatomy/CrossSectionAtlas.html.Google Scholar
  11. 11.
    K. Giering, O. Minet, I. Lamprecht, and G. Muller, Review of thermal properties of biological tissues, in: G. J. Muller and A. Roggan (Eds.) Laser-Induced Interstitial Thermotherapy, SPIE (1995), pp. 45–65.Google Scholar
  12. 12.
    A. A. Makhanek and E. A. Bashtovaya, Influence of some rheological factors on the blood stream and the thermal state of a human organism under cold actions, in: Proc. IV Minsk Int. Forum “Heat and Mass Transfer-MIF-2000” [in Russian], 22–26 May 2000, Minsk, Vol. 7, Minsk (2000), pp. 74–84.Google Scholar
  13. 13.
    S. M. Danilova-Tret’yak, Thermophysical characteristics of biotissues, in: Lasers in Biomedicine [in Russian], Minsk (2003), pp. 209–213.Google Scholar
  14. 14.
    R. G. Gordon, R. B. Roemer, and S. M. Horvath, A mathematical model of the human temperature regulatory system — transient cold exposure response, IEEE Trans. Biomed. Eng., BME-23, No.6, 434–444 (1976).Google Scholar
  15. 15.
    J. A. J. Stolwijk, Mathematical models of thermal regulation, Ann. N. Y. Acad. Sci., 335, 98–106 (1980).PubMedGoogle Scholar
  16. 16.
    Z. P. Shul’man, B. M. Khusid, and I. V. Fain, Theoretical analysis of thermal processes in living biological tissues subjected to local hyperthermia. II. Analysis of the temperature fields in the case of local SHF-hyperthermia of tumors with regard for the nonstationary nonlinear perfusion of tissues, Inzh.-Fiz. Zh., 68, No.3, 430–437 (1995).Google Scholar
  17. 17.
    S. Danilova-Tretiak and V. Dragun, VHF electric field as a source of thermal loads in biotissue, Adv. Heat Transfer Eng., Kaunas (2003), pp. 781–784.Google Scholar
  18. 18.
    S. M. Danilova-Tretiak, V. L. Dragun, and S. I. Sharko, Thermometric Study of Biotissues Exposed to External Actions [in Russian], Preprint No. 1 of the A. V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, Minsk (2001).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • V. L. Dragun
    • 1
  • S. M. Danilova-Tret’yak
    • 1
  • S. A. Gubarev
    • 1
  1. 1.A. V. Luikov Heat and Mass Transfer InstituteNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations