Advertisement

Prospects for employing heat pumps in the Republic of Belarus

  • L. L. Vasil’ev
Article
  • 45 Downloads

Abstract

A brief analysis of the possibilities of employing sorption heat pumps in the Republic of Belarus is given. Primary consideration is given to the light-duty heat pumps used for air-conditioning systems with automatic switching from the heating to the cooling state (air/water). One important component of sorption heat pumps is the low-temperature power source, which strongly influences the design of the heat pump in terms of economy and environmental protection.

Keywords

Statistical Physic Environmental Protection Power Source Transport Phenomenon Heat Pump 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    T. Nishimura, Heat pumps — status and trends in Asia and Pacific, Int. J. Refriger., No. 25, 405–413 (2002).Google Scholar
  2. 2.
    T. Berntsson, Heat sources — technology, economy and environment, Int. J. Refriger., No. 25, 428–443 (2002).Google Scholar
  3. 3.
    L. L. Vasiliev, D. A. Mishkinis, A. A. Antukh, and L. L. Vasiliev, Jr., Solar-gas solid sorption heat pump, in: Proc. Int. Sorption Heat Pump Conf., 24–26 March 1999, Munich, Germany (1999), pp. 117–122.Google Scholar
  4. 4.
    R. Z. Wang, M. Li, J. Y. Wu, and X. X. Xu, A new hybrid system of solar powered water heater and adsorption ice maker, in: Proc. Int. Sorption Heat Pump Conf., 24–26 March 1999, Munich, Germany (1999), pp. 123–127.Google Scholar
  5. 5.
    L. L. Vasiliev, D. Nikanpour, A. A. Antukh, K. Snelson, L. L. Vasiliev, Jr., and A. Lebru, Multisalt carbon chemical cooler for space applications, in: Proc. Int. Sorption Heat Pump Conf., 24–26 March 1999, Munich, Germany (1999), pp. 579–583.Google Scholar
  6. 6.
    G. Restuccia, A. Freni, and G. Cacciola, Adsorption beds of zeolite on aluminum sheets, in: Proc. Int. Sorption Heat Pump Conf., 24–26 March 1999, Munich, Germany (1999), pp. 343–347.Google Scholar
  7. 7.
    L. L. Vasil’ev and S. L. Vaaz, Freezing and Heating of Ground by Cooling Devices [in Russian], Nauka i Tekhnika, Minsk (1986).Google Scholar
  8. 8.
    F. Meunier (Ed.), Proc. Symp. Solid Sorption Refrigeration, 18–20 November 1992, Paris (1992).Google Scholar
  9. 9.
    D. Nikanpour and S. Hosatte, Towards sustainable technologies, in: Proc. Absorption Heat Pump Conf., 17–20 September 1996, Montreal, Canada (1996).Google Scholar
  10. 10.
    C. Schweiger, S. Summerer, H.-M. Hellman, and F. Ziegler (Eds.), Proc. Int. Sorption Heat Pump Conf., 24–26 March 1999, Munich, Germany (1999).Google Scholar
  11. 11.
    W. Wang, Z. Lu, W. Wang, and X. Huang (Eds.), Proc. Int. Sorption Heat Pump Conf., 24–27 September 2002, Science Press, New York, Shanghai, China (2002).Google Scholar
  12. 12.
    I. Yaron and I. Borde, Working fluids for heat pumps, VDI-Berichte 539, ORC-HP-Technology, VDI, Dü sseldorf (1984), pp. 145–162.Google Scholar
  13. 13.
    I. Borde, M. Jelinek, and N. Daltrophe, Working fluids for an absorption system based on R124/2-chloro-1,1,12-tetrafluoroethane and organic absorbents, Int. J. Refriger., 20(4), 256–266 (1996).CrossRefGoogle Scholar
  14. 14.
    M. Ishikawa, H. Kayanuma, and N. Isshiki, Absorption heat pump using new organic working absorbents, in: Proc. Int. Sorption Heat Pump Conf., 24–26 March 1999, Munich, Germany (1999), pp. 197–204.Google Scholar
  15. 15.
    K. Hunold, Kälteerzeugung mit Absorptionstechnik-Prinzip, Einsatzmöglichkeiten, Vor-und Nachteile, erste Betriebserfahrungen, in: Wirtschaftliche Wärmenutzung in Industrie und Gewerbe, VDI-Berichte 1296, VDI, Düsseldorf (1997), pp. 227–242.Google Scholar
  16. 16.
    Yu. I. Aristov, M. M. Burger, W. Parmon, G. Restuccia, H. D. Burger, W. Mittelbach, and H. M. Henning, New working materials for sorption cooling/heating driven by low temperature heat: Properties, in: Proc. Int. Sorption Heat Pump Conf., 24–26 March 1999, Munich, Germany (1999), pp. 247–254.Google Scholar
  17. 17.
    L. L. Vasiliev, N. V. Gulko, and V. M. Khaustov, Solid adsorption refrigerators with active carbon-acetone and carbon-ethanol pairs, in: Proc. Symp. Solid Sorption Refrigeration, 18–20 November 1992, Paris (1992), pp. 92–99.Google Scholar
  18. 18.
    L. L. Vasiliev, L. E. Kanonchik, V. V. Khrolenok, D. A. Mishkinis, and A. S. Zhuravlyov, Activated carbon ammonia and natural gas adsorption storage, in: Ext. Abstr. and Program of 23rd Biennial Conf. “Carbon’97, ” 18–23 July 1997, Vol. 1 — Adsorption/Reactivity/Intercalation, PennState, University Park Campus (1997), pp. 334–335.Google Scholar
  19. 19.
    Y. T. Kang, K. Iizuka, A. Akisawa, and T. Kashiwagi, Experiments on heat transfer additives, for NH3-H2O solution, in: Proc. Int. Sorption Heat Pump Conf., 24–26 March 1999, Munich, Germany (1999), pp. 291–296.Google Scholar
  20. 20.
    F. Ziegler and G. Grossman, Review paper: Heat transfer enhancement by additives, Int. J. Refriger., 19, No.5, 301–309 (1996).CrossRefGoogle Scholar
  21. 21.
    L. Hoffman and F. Ziegler, Heat and mass transfer enhancement by additives in NH3-H2O, in: Proc. Int. Sorption Heat Pump Conf., 24–26 March 1999, Munich, Germany (1999), pp. 297–300.Google Scholar
  22. 22.
    K. E. Herold, R. Rademacher, and S. A. Klein, Absorption Chillers and Heat Pumps, CRC Press, Boca Raton (1996).Google Scholar
  23. 23.
    L. L. Vasil’ev and Yu. E. Fraiman, Thermophysical Properties of Poor Heat Conductors [in Russian], Nauka i Tekhnika, Minsk (1967).Google Scholar
  24. 24.
    L. L. Vasil’ev and S. A. Tanaeva, Thermophysical Properties of Porous Materials [in Russian], Nauka i Tekhnika, Minsk (1971).Google Scholar
  25. 25.
    A. V. Luikov, A. G. Shashkov, L. L. Vasil’ev, and Yu. E. Fraiman, Thermal conductivity of porous systems, Int. J. Heat Mass Transfer, 11, 117–140 (1968).CrossRefGoogle Scholar
  26. 26.
    N. Mazet, S. Moran, and P. Jolly, Dimensionless analysis of main limitations in solid-gas reactive blocks for solid sorption machines, in: Proc. Int. Sorption Heat Pump Conf., 24–26 March 1999, Munich, Germany (1999), pp. 337–341.Google Scholar
  27. 27.
    F. Meunier, Adsorption heat pump technology: Possibilities and limits, in: Proc. Int. Sorption Heat Pump Conf., 24–26 March 1999, Munich, Germany (1999), pp. 25–35.Google Scholar
  28. 28.
    L. L. Vasiliev, D. A. Mishkinis, A. A. Antukh, A. G. Kulakov, and L. L. Vasiliev, Jr., Resorption heat pumps, Appl. Thermal Eng., 24, 1893–1903 (2004).CrossRefGoogle Scholar
  29. 29.
    L. L. Vasil’ev, Use of the Earth’s energy by means of heat pipes, Inzh.-Fiz. Zh., 59, No.3, 488–491 (1990).Google Scholar
  30. 30.
    M. Shiraishi, Heat pipes, Geothermal Energy, 24, No.1, 57–62 (1987).Google Scholar
  31. 31.
    L. L. Vasil’ev, L. P. Grakovich, and D. K. Khrustalev, Heat Pipes in Systems with Renewable Sources of Energy [in Russian], Nauka i Tekhnika, Minsk (1988).Google Scholar
  32. 32.
    L. L. Vasil’ev, Reduction of release of CO2 into the atmosphere and increase in the efficiency of electric power stations by using modern thermodynamic cycles, in: Heat and Mass Transfer-2003 [in Russian], Minsk (2003), pp. 19–26.Google Scholar
  33. 33.
    Yukitaka Kato, Mitsuteru Yamada, and Yoshio Yoshizawa, Application of a chemical heat pump on high-temperature process for high-efficiency energy utilization, in: Proc. IV Minsk Int. Seminar “Heat Pipes, Heat Pumps, Refrigerators,” 4–7 September 2000, Minsk, Belarus (2000), pp. 70–76.Google Scholar
  34. 34.
    S. T. Munkejord, H. S. Mehlum, G. R. Zakeri, P. Neksa, and J. Pettersen, Microtechnology in heat pumping systems, Int. J. Refriger., 25, 471–478 (2002).CrossRefGoogle Scholar
  35. 35.
    P. Wu and W. A. Little, Measurements of the heat transfer characteristics of gas flow in fine channel heat exchangers used for microminiature refrigerators, Cryogenics, 24, 123–134 (1984).CrossRefGoogle Scholar
  36. 36.
    S. B. Choi, R. F. Barron, and R. O. Warrington, Fluid flow and heat transfer in microtubes, in: Proc. Winter Annual Meeting of the American Society of Mechanical Engineers, ASME (1991), pp. 123–134.Google Scholar
  37. 37.
    M. K. Drost and M. Friedrich, Miniature heat pumps for portable and distributed space conditioning applications, in: Proc. 1997 Intersociety Energy Conversion Engineering Conf., Pt. 2, IEEE, 1271–1274 (1997).Google Scholar
  38. 38.
    D. B. Tuckerman and RFW Peace, High-performance heat sinking for VLSI, Electronics Device Lett., EDL-2(5), 126–129 (1981).Google Scholar
  39. 39.
    D. K. Baley, T. A. Ameel, J. Warrington, O. Robert, and T. I. Savoie, Single-phase forced convection heat transfer in micro-geometries — A review, in: Proc. 1995 30th Energy Conversion Engineering Conf., IECEC, ASME (1995), 301–310.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • L. L. Vasil’ev
    • 1
  1. 1.A. V. Luikov Heat and Mass Transfer InstituteNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations