Advertisement

Reduction of a class of inverse heat-conduction problems to direct initial/boundary-value problems

  • V. T. Borukhov
  • P. N. Vabishchevich
  • V. I. Korzyuk
Article
  • 30 Downloads

Abstract

The authors present a method of reducing inverse problems of recovery of boundary heat fluxes by means of data of integral or differential temperature measurements on the boundary to direct initial/boundary-value problems.

Keywords

Heat Flux Inverse Problem Green Function Inverse Prob Classical Boundary Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. T. Borukhov, Inzh.-Fiz. Zh., 47, No. 3, 465–474 (1984).Google Scholar
  2. 2.
    V. T. Borukhov, Avtomat. Telemekh., No. 5, 28–36 (1982).Google Scholar
  3. 3.
    V. T. Borukhov and P. N. Vabishchevich, Mat. Modelir., 10, No. 11, 93–100 (1998).Google Scholar
  4. 4.
    A. A. Samarskii, Differents. Uravn., 16, No. 11, 1925–1935 (1980).Google Scholar
  5. 5.
    A. N. Tikhonov, Mat. Sb., 26(86), No. 1, 35–56 (1950).Google Scholar
  6. 6.
    W. Feller, Ann. Math., 55, 468–519 (1952).CrossRefGoogle Scholar
  7. 7.
    A. D. Venttsel’, Teoriya Veroyatnostei Ee Primeneniya, 4, No. 2, 172–195 (1959).Google Scholar
  8. 8.
    O. M. Alifanov, Identification of Heat-Transfer Processes of Aircraft [in Russian], Moscow (1979).Google Scholar
  9. 9.
    N. I. Ionkin, Differents. Uravn., 13, No. 2, 294–304 (1977).MATHGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • V. T. Borukhov
    • 1
  • P. N. Vabishchevich
    • 2
  • V. I. Korzyuk
    • 3
  1. 1.Institute of MathematicsNational Academy of Sciences of BelarusMinskBelarus
  2. 2.Institute of Mathematical ModelingRussian Academy of SciencesMoscowRussia
  3. 3.Belarusian State UniversityMinskBelarus

Personalised recommendations