Model of tritium dispersion by ground water

  • A. V. Golubev
  • S. V. Mavrin
  • A. V. Sten’gach


A three-dimensional model of ground-water contamination in the zone of a steady source of tritium is presented. The model is oriented toward long-term modeling of contamination (for up to several decades) on a large area (of up to several hundred square kilometers) where the contaminant arrives through the roof of the aquiferous stratum by infiltration. The three-dimensional equation of convective diffusion is solved numerically by the method of splitting. The convective component is calculated by the method of particles. The dispersion component of the transfer is calculated using the finite-difference method. A transformation of the vertical coordinate is introduced. A solution of the model problem is presented and an interpretation of the results is given.


Ground Water Tritium Convective Diffusion Calculation Region Calculation Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. F. Belovodskii, V. K. Gaevoi, and V. I. Grishmanovskii, Tritium [in Russian], Moscow (1985).Google Scholar
  2. 2.
    P. Engesgaard, K. H. Jensen, J. Molson, E. O. Frind, and H. Olsen, Water Resour. Res., 32, No. 11, 3253–3265 (1996).CrossRefGoogle Scholar
  3. 3.
    L. W. Gelhar, C. Welty, and K. R. Rehfeldt, Water Resour. Res., 28, No. 7, 1952–1974 (1992).CrossRefGoogle Scholar
  4. 4.
    G. N. Genzel’, N. F. Karachevtsev, P. K. Konosavskii, et al., Solution of Problems of Protection of Subterranean Water Using Numerical Models [in Russian], Moscow (1992).Google Scholar
  5. 5.
    V. N. Nikolaevskii, Prikl. Mat. Mekh., 23, No. 6, 1042–1050 (1959).Google Scholar
  6. 6.
    N. N. Yanenko, Method of Fractional Steps for Solution of Multidimensional Problems of Mathematical Physics [in Russian], Novosibirsk (1967).Google Scholar
  7. 7.
    M. I. Avramenko, E. S. Andreev, A. P. Vasil’ev, et al., Vopr. Atomn. Nauki Tekh., Ser. Mat. Modelirovanie Fiz. Protsessov (Moscow), Issue 1, 26–31 (1994).Google Scholar
  8. 8.
    N. N. Anuchina, K. I. Babenko, S. N. Godunov, et al., Theoretical Foundations and Design of Numerical Algorithms for Problems of Mathematical Physics [in Russian], Moscow (1979).Google Scholar
  9. 9.
    A. A. Samarskii, Theory of Difference Schemes [in Russian], Moscow (1989).Google Scholar
  10. 10.
    D. Anderson, J. Tannehill, and R. Pletcher, Computational Fluid Mechanics and Heat Transfer [Russian translation], in 2 vols., Moscow (1990).Google Scholar
  11. 11.
    BIOMASS Theme 3, Tritium Working Group. Scenario 1.3, Description (1998).Google Scholar
  12. 12.
    V. A. Mironenko, Dynamics of Subterranean Water [in Russian], Moscow (1983).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • A. V. Golubev
    • 1
  • S. V. Mavrin
    • 1
  • A. V. Sten’gach
    • 1
  1. 1.Russian Federal Nuclear Center of All-Union Scientific-Research Institute of Experimental PhysicsArzamas-16Russia

Personalised recommendations