Advertisement

The Journal of Economic Inequality

, Volume 13, Issue 2, pp 299–307 | Cite as

Measuring income inequality using survey data: the case of China

  • Yongwei Chen
  • Dahai Fu
Article
  • 529 Downloads

Abstract

The purpose of this paper is to raise awareness of missing data when we evaluate income inequality using survey data. If the income data are not missing completely at random, the calculated income inequalities are more likely to be biased, which may lead to inappropriate conclusions and policy recommendations. To handle the missing data on income, a multiple imputation approach is utilized. In particular, we propose an extended approach to correct the possible sample selection bias in the imputation process. A case study using China’s household survey suggests that extended imputation corrects for biases effectively in the calculation of Gini coefficients and results in gains in efficiency as well.

Keywords

Income inequality Multiple imputation Missing data China 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdelkrim, A., Duclos, J.-Y.: DASP: distributive analysis Stata package. PEP, World Bank, UNDP and University LavalGoogle Scholar
  2. 2.
    Cornia, G. A., Court, J.: Inequality, growth and poverty in the era of liberalization and globalization.UNU world institute for development economics research (2001)Google Scholar
  3. 3.
    Davey, A, Shanahan, M. J., Schafer, J. L.: Correcting for selective nonresponse in the national longitudinal survey of youth using multiple imputation. J. Hum. Resour. 36 (3), 500–519 (2001)CrossRefGoogle Scholar
  4. 4.
    Esteban, J., Ray, D.: Linking conflict to inequality and polarization. Am. Econ. Rev. 101, 1345–1374 (2011)CrossRefGoogle Scholar
  5. 5.
    Fajnzylber, P., Lederman, D., Loayza, N.: Inequality and violent crime. J. Law Econ. 45 (1), 1–40 (2002)CrossRefGoogle Scholar
  6. 6.
    Frick, J. R., Grabka, M. M.: Missing income data in panel surveys: Incidence, imputation and its impact on the income distribution. Discussion papers, p 376 (2004)Google Scholar
  7. 7.
    He, Y.: Missing data analysis using multiple imputation: Getting to the Heart of the Matter. Circ. Cardiovasc. Qual. Outcomes 3 (1), 98–105 (2010)CrossRefGoogle Scholar
  8. 8.
    Heckman, J. J.: Sample selection bias as a specification error. Econometrica 47 (1), 153–161 (1979)CrossRefGoogle Scholar
  9. 9.
    Honaker, J., King, G.: What to do about missing values in time series cross-section data. Am. J. Polit. Sci. 54 (2), 561–581 (2010)CrossRefGoogle Scholar
  10. 10.
    Horowitz, J. L., Manski, C. F.: Censoring outcomes and regressors due to survey nonresponse: identification and estimation using weights and imputations. J. Econo. 84, 37–58 (1998)CrossRefGoogle Scholar
  11. 11.
    Knight, J., Song, L.: Increasing urban wage inequality in China: Extent, element and evaluation. Econ. Transit. 11 (4), 597–619 (2003)CrossRefGoogle Scholar
  12. 12.
    Liu, H.: The China Health and Nutrition Survey: An important database for poverty and inequality research. J. Econ. Inequal. 6 (4), 373–376 (2008)CrossRefGoogle Scholar
  13. 13.
    Ning, G.: Can educational expansion improve income inequality? Evidences from the CHNS 1997 and 2006 data. Econ. Syst. 34 (4), 397–412 (2010)CrossRefGoogle Scholar
  14. 14.
    Royston, P., Carlin, J. B., White, I. R.: Multiple imputation of missing values: New features for mim. Stata J. 9 (2), 252–264 (2009)Google Scholar
  15. 15.
    Rubin, D. B.: Multiple imputation in sample surveys — a phenomenological Bayesian approach to nonresponse. in proceedings of the section on survey research methods,American Statistical Association, pp 20–34 (1978)Google Scholar
  16. 16.
    Rubin, D. B.: Multiple imputation for nonresponse in surveys. Wiley, New York (1987)CrossRefGoogle Scholar
  17. 17.
    Rubin, D. B.: Multiple imputation after 18 + years. J. Am. Stat. Assoc. 91 (434), 473–489 (1996)CrossRefGoogle Scholar
  18. 18.
    Schafer, J. L.: Analysis of incomplete multivariate data.London:Chapman and Hall (1997)Google Scholar
  19. 19.
    Schenker, N., Raghunathan, T.E., Chiu, P.-L.,Makuc, D.M., Zhang, G., Cohen, A.J.:Multiple imputation of missing income data in the national health interview survey. J. Am. Stat. Assoc. 101(475), 924–933 (2006)Google Scholar
  20. 20.
    Thorbecke, E., Charumilind, C.: Economic inequality and its socioeconomic impact. World Dev. 30 (9), 1477–1495 (2002)CrossRefGoogle Scholar
  21. 21.
    van Buuren, S., Boshuizen, H. C., Knook, D. L.: Multiple imputation of missing blood pressure covariates in survival analysis. Stat. Med. 18, 681–694 (1999)CrossRefGoogle Scholar
  22. 22.
    Wan, G., Zhang, X.: Rising inequality in China. J. Comp. Econ. 34 (4), 651–653 (2006)CrossRefGoogle Scholar
  23. 23.
    Yu, J., Zhu, G.: How uncertainty is household income in China? Economics Letters 120 (1), 74–78 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.School of Statistics and MathematicsZhongnan University of Economics and LawWuhanChina
  2. 2.School of International Trade and EconomicsCentral University of Finance and EconomicsBeijingChina

Personalised recommendations