Advertisement

The Journal of Economic Inequality

, Volume 12, Issue 4, pp 469–488 | Cite as

Poverty status probability: a new approach to measuring poverty and the progress of the poor

  • Gordon Anderson
  • Maria Grazia Pittau
  • Roberto Zelli
Article

Abstract

Poverty measurement and the analysis of the progress (or otherwise) of the poor, whether it is societies, families or individuals, is beset with difficulties and controversies surrounding the definition of a poverty line or frontier. Here, borrowing ideas from the mixture model literature, a new approach to assigning poverty-non poverty status is proposed which avoids specifying a frontier, the price is that an agent’s poverty status is only determined to the extent of its chance of being poor. Invoking variants of Gibrat’s law to give structure to the distribution of outcomes for homogeneous subgroups of a population within the context of a finite mixture model of societal outcomes facilitates calculation of an agent’s poverty status probability. From this it is straightforward to calculate all the usual poverty measures as well as other characteristics of the poor and non poor subgroups in a society. These ideas are exemplified in a study of 47 countries in Africa over the recent quarter century which reveals among other things a growing poverty rate and a growing disparity between poor and non poor groups not identified by conventional methods.

Keywords

Poverty frontiers Mixture models Gibrat’s law 

JEL Classifications

C14 I32 O1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aitkin, M., Wilson, G.T.: Mixture models, outliers, and the EM algorithm. Technometrics 22, 325–331 (1980)CrossRefGoogle Scholar
  2. 2.
    Anderson, G.J., Linton, O., Wang, Y.: Nonparametric estimation and inference about the overlap of two distributions. J. Econ. 171, 1–23 (2012)CrossRefGoogle Scholar
  3. 3.
    Anderson, G.J., Linton, O., Leo, T.: A polarization-cohesion perspective on cross country convergence. J. Econ. Growth 17, 49–69 (2012)CrossRefGoogle Scholar
  4. 4.
    Atkinson, A.B.: On the measurement of poverty. Econometrica 55, 749–64 (1987)CrossRefGoogle Scholar
  5. 5.
    Betti, G., Cheli, B., Lemmi, A., Verma, V.: On the construction of fuzzy measures for the analysis of poverty and social exclusion. Stat. Appl. 4, 77–97 (2006)Google Scholar
  6. 6.
    Bourguignon, F., Chakravarty, S.R.: The measurement of multidimensional poverty. J. Econ. Inequal. 1, 25–49 (2003)CrossRefGoogle Scholar
  7. 7.
    Bowman, A.W.: Density based tests of goodness-of-fit. J. Stat. Comput. Simul. 40, 1–13 (1992)CrossRefGoogle Scholar
  8. 8.
    Cheli, B., Lemmi, A., Spera, C.: An E.M. algorithm for estimating mixtures of Dagum’s models. In: Dagum, C., Lemmi, A. (eds.) Income Distribution, Social Welfare, Inequality and Poverty, vol. VI. Researches on Income Inequality, Slotjee, D.J. (ed.), pp. 131–142. JAI Press, Greenwich (1995)Google Scholar
  9. 9.
    Citro, C.F., Michael, R.T.: Measuring Poverty: A New Approach. National Academy Press, Washington (1995)Google Scholar
  10. 10.
    Davidson, R., Duclos, J.-Y.: Statistical inference for stochastic dominance and for the measurement of poverty and inequality. Econometrica 68, 1435–1464 (2000)CrossRefGoogle Scholar
  11. 11.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via EM algorithm. J. Roy. Stat. Soc. B 69, 1–38 (1977)Google Scholar
  12. 12.
    Duclos, J.-Y., Sahn, D., Younger, S.D.: Robust multidimensional poverty comparisons. Econ. J. 116, 943–968 (2006)CrossRefGoogle Scholar
  13. 13.
    Durlauf, S., Johnson, P.A., Temple, J.: Growth econometrics. In: Aghion, P., Durlauf, S. (eds.) Handbook of Economic Growth, vol. 1B, chap. 8. North Holland, Amsterdam (2005)Google Scholar
  14. 14.
    Fan, Y.: Testing the goodness of fit of a parametric density function by kernel method. Econ. Theor. 10, 316–356 (1994)CrossRefGoogle Scholar
  15. 15.
    Fan, Y.: Bootstrapping a consistent non parametric goodness-of-fit test. Econ. Rev. 14, 367–82 (1995)CrossRefGoogle Scholar
  16. 16.
    Fan, Y., Ullah, A.: On goodness-of-fit tests for weakly dependent processes using kernel method. J. Nonparametric Stat. 11, 337–360 (1999)CrossRefGoogle Scholar
  17. 17.
    Ferreira, F., Ravallion, M.: Poverty and inequality: The global context. In: Salverda, W., Nolan, B., Smeeding, T. (eds.) The Oxford Handbook of Economic Inequality. Oxford University Press, Oxford (2009)Google Scholar
  18. 18.
    Foster, J.E., Greer, J., Thorbecke, E.: A class of decomposable poverty measures. Econometrica 42, 761–766 (1984)CrossRefGoogle Scholar
  19. 19.
    Foster, J.E., Shorrocks, A.F.: Poverty orderings. Econometrica 56, 173–177 (1988)CrossRefGoogle Scholar
  20. 20.
    Gibrat, R.: Une Loi Des Repartitions Economiques: L’effet Proportionelle. Bulletin de Statistique General, France 19, 469 (1930)Google Scholar
  21. 21.
    Gibrat, R.: Les Inegalites Economiques. Libraire du Recueil Sirey, Paris (1931)Google Scholar
  22. 22.
    Grusky, D., Kanbur, R. (eds.): Poverty and Inequality. Stanford University Press, Stanford (2006)Google Scholar
  23. 23.
    Jones, M.C., Marron, J.S., Sheather, S.J.: A brief survey of bandwidth selection for density estimation. J. Am. Stat. Assoc. 91, 401–407 (1996)CrossRefGoogle Scholar
  24. 24.
    Kalecki, M.: On the Gibrat distribution. Econometrica 13, 161–170 (1945)CrossRefGoogle Scholar
  25. 25.
    Kiefer, J., Wolfowitz, J.: Consistency of the maximum likelihood estimator in the presence of infinitely many incidental parameters. Ann. Math. Stat. 27, 887–906 (1956)CrossRefGoogle Scholar
  26. 26.
    Manski, C.F.: Partial Identification of Probability Distributions. Springer-Verlag, New York (2003)Google Scholar
  27. 27.
    McLachlan, G., Peel, D.: Finite Mixture Models. Wiley, New York (2000)CrossRefGoogle Scholar
  28. 28.
    Pittau, M.G., Zelli, R., Johnson, P.A.: Mixture models, convergence clubs and polarization. Rev. Income Wealth 56, 102–122 (2010)CrossRefGoogle Scholar
  29. 29.
    R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org (2010)
  30. 30.
    Ravallion, M.: Poverty lines. In: Blume, L., Durlauf, S. (eds.) The New Palgrave Dictionary of Economics, 2nd edn. Palgrave Macmillan, London (2008)Google Scholar
  31. 31.
    Ravallion, M.: Why don’t we see poverty convergence? Am. Econ. Rev. 102(1), 504–523 (2012)CrossRefGoogle Scholar
  32. 32.
    Redner, R.A., Walker, H.F.: Mixture densities, maximum likelihood, and the EM algorithm. SIAM Rev. 26, 195–239 (1984)CrossRefGoogle Scholar
  33. 33.
    Richardson, S., Green, P.J.: On Bayesian analysis of mixtures with unknown number of components. J. Roy. Stat. Soc. B 731–792 (1997)Google Scholar
  34. 34.
    Rodgers, J.R., Rodgers, J.L.: Chronic poverty in the United States. J. Hum. Resour. XXVIII, 25–54 (1993)CrossRefGoogle Scholar
  35. 35.
    Sala-i-Martin, X.: The world distribution of income: Falling poverty and...convergence, period. Q. J. Econ. 121, 351–397 (2006)CrossRefGoogle Scholar
  36. 36.
    Sen, A.K.: Poor relatively speaking. Oxf. Econ. Pap. 35, 153–169 (1983)Google Scholar
  37. 37.
    Sen, A.K.: Inequality Reexamined. Oxford University Press, Oxford (1992)Google Scholar
  38. 38.
    Sen, A.K.: On Economic Inequality. Oxford University Press, Oxford (1997)Google Scholar
  39. 39.
    Slesnick, D.J.: Gaining ground: poverty in the postwar United States. J. Pol. Econ. 101, 1–38 (1993)CrossRefGoogle Scholar
  40. 40.
    Sutton, J.: Gibrat’s legacy. J. Econ. Lit. 35, 40–59 (1997)Google Scholar
  41. 41.
    Townsend: A sociological approach to the measurement of poverty—A rejoinder to Professor Amartya Sen. Oxf. Econ. Pap. 37, 659–668 (1985)Google Scholar
  42. 42.
    World Bank: Africa Development Indicators. World Bank Group (2010)Google Scholar
  43. 43.
    Yitzhaki, S.: Economic distance and overlapping of distributions. J. Econ. 61, 147–159 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Gordon Anderson
    • 1
  • Maria Grazia Pittau
    • 2
  • Roberto Zelli
    • 2
  1. 1.Department of EconomicsUniversity of TorontoTorontoCanada
  2. 2.Department of Statistical ScienceSapienza University of RomeRomeItaly

Personalised recommendations