The Journal of Economic Inequality

, Volume 9, Issue 4, pp 509–528 | Cite as

Inequality decompositions—a reconciliation

  • Frank A. Cowell
  • Carlo V. Fiorio


We show how classic source-decomposition and subgroup-decomposition methods can be reconciled with regression methodology used in the recent literature. We also highlight some pitfalls that arise from uncritical use of the regression approach. The LIS database is used to compare the approaches using an analysis of the changing contributions to inequality in the United States and Finland.


Inequality Decomposition 

JEL Classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blackorby, C., Donaldson, D., Auersperg, M.: A new procedure for the measurement of inequality within and among population subgroups. Can. J. Econ. 14, 665–685 (1981)CrossRefGoogle Scholar
  2. 2.
    Blinder, A.S.: Wage discrimination: reduced form and structural estimates. J. Hum. Resour. 8, 436–455 (1973)CrossRefGoogle Scholar
  3. 3.
    Bourguignon, F.: Decomposable income inequality measures. Econometrica 47, 901–920 (1979)CrossRefGoogle Scholar
  4. 4.
    Bourguignon, F., Ferreira, F.H.G., Leite, P.G.: Beyond Oaxaca-Blinder: accounting for differences in household income distributions. J. Econ. Inequal. 6, 117–148 (2008)CrossRefGoogle Scholar
  5. 5.
    Bourguignon, F., Fournier, M., Gurgand, M.: Fast development with a stable income distribution: Taiwan, 1979–94. Rev. Income Wealth 47, 139–163 (2001)CrossRefGoogle Scholar
  6. 6.
    Brandolini, A., Smeeding, T.M.: Income inequality in richer and OECD countries. In: Salverda, W., Nolan, N., Smeeding, T.M. (eds.) Oxford Handbook on Economic Inequality, chapter 4. Oxford University Press, Oxford (2008)Google Scholar
  7. 7.
    Brandolini, A., Smeeding, T.M.: Inequality patterns in western-type democracies: cross-country differences and time changes. In: Democracy, I., Representation, P.B., Anderson, R.S.F.C.J. (eds.) Democracy, Inequality and Representation. Russell Sage Foundation, New York (2008)Google Scholar
  8. 8.
    Chantreuil, F., Trannoy, A.: Inequality decomposition values: the trade-off between marginality and consistency. Working Papers 99-24, THEMA, Université de Cergy-Pontoise (1999)Google Scholar
  9. 9.
    Charpentier, A., Mussard, S.: Income inequality games. J. Econ. Inequal. (2011, to appear)Google Scholar
  10. 10.
    Cowell, F.A.: On the structure of additive inequality measures. Rev. Econ. Stud. 47, 521–531 (1980)CrossRefGoogle Scholar
  11. 11.
    Cowell, F.A.: Inequality decomposition—three bad measures. Bull. Econ. Res. 40, 309–312 (1988)CrossRefGoogle Scholar
  12. 12.
    Cowell, F.A.: Sampling variance and decomposable inequality measures. J. Econom. 42, 27–41 (1989)CrossRefGoogle Scholar
  13. 13.
    Cowell, F.A., Jenkins, S.P.: How much inequality can we explain? A methodology and an application to the USA. Econ. J. 105, 421–430 (1995)CrossRefGoogle Scholar
  14. 14.
    DiNardo, J., Fortin, N.M., Lemieux, T.: Labor market institutions and the distribution of wages, 1973–1992: a semiparametric approach. Econometrica 64, 1001–1044 (1996)CrossRefGoogle Scholar
  15. 15.
    Ebert, U.: On the decomposition of inequality: Partitions into nonoverlapping sub-groups. In: Eichhorn, W. (ed.) Measurement in Economics. Physica Verlag, Heidelberg (1988)Google Scholar
  16. 16.
    Elbers, C., Lanjouw, P., Mistiaen, J.A., Özler, B.: Reinterpreting between-group inequality. J. Econ. Inequal. 6, 231–245 (2008)CrossRefGoogle Scholar
  17. 17.
    Fields, G.S.: Accounting for income inequality and its change: a new method with application to distribution of earnings in the United States. Res. Labor Econ. 22, 1–38 (2003)CrossRefGoogle Scholar
  18. 18.
    Fields, G.S., Yoo, G.: Falling labor income inequality in Korea’s economic growth: patterns and underlying causes. Rev. Income Wealth 46, 139–159 (2000)CrossRefGoogle Scholar
  19. 19.
    Fiorio, C., Jenkins, S.P.: Regression-based inequality decomposition, following Fields (2003). UK Stata User Group meeting, 10 September 2007Google Scholar
  20. 20.
    Foster, J.E., Shneyerov, A.A.: A general class of additively decomposable inequality measures. Econ. Theory 14, 89–111 (1999)CrossRefGoogle Scholar
  21. 21.
    Foster, J.E., Shneyerov, A.A.: Path independent inequality measures. J. Econ. Theory 91, 199–222 (2000)CrossRefGoogle Scholar
  22. 22.
    Gornick, J.C., Smeeding, T.M.: The Luxembourg income study. In: Darity, W.A.J. (ed.) International Encyclopedia of the Social Sciences, 2nd edn., pp. 419–422. Macmillan, Detroit (2008)Google Scholar
  23. 23.
    Jenkins, S.P.: Accounting for inequality trends: Decomposition analyses for the UK. Economica 62, 29–64 (1995)CrossRefGoogle Scholar
  24. 24.
    Kanbur, S.M.N.: The policy significance of decompositions. J. Econ. Inequal. 4, 367–374 (2006)CrossRefGoogle Scholar
  25. 25.
    Lasso de la Vega, C., Urrutia, A.: Path independent multiplicatively decomposable inequality measures. Investig. Econ. 29, 379–387 (2005)Google Scholar
  26. 26.
    Lasso de la Vega, C., Urrutia, A.: The extended Atkinson family: the class of multiplicatively decomposable inequality measures, and some new graphical procedures for analysts. J. Econ. Inequal. 6, 211–225 (2008)CrossRefGoogle Scholar
  27. 27.
    Morduch, J., Sicular, T.: Rethinking inequality decomposition, with evidence from rural China. Econ. J. 112, 93–106 (2002)CrossRefGoogle Scholar
  28. 28.
    Olkin, I., Yitzhaki, S.: Gini regression analysis. Int. Stat. Rev. 60, 185–196 (1992)CrossRefGoogle Scholar
  29. 29.
    Paul, S.: Income sources effects on inequality. J. Dev. Econ. 73, 435–451 (2004)CrossRefGoogle Scholar
  30. 30.
    Sala-i-Martin, X.: The world distribution of income: falling poverty and ... convergence, period. Q. J. Econ. 121, 351–397 (2006)CrossRefGoogle Scholar
  31. 31.
    Sastre, M., Trannoy, A.: Changing income inequality in advanced countries: a nested marginalist decomposition analysis. mimeo (2000)Google Scholar
  32. 32.
    Sastre, M., Trannoy, A.: Shapley inequality decomposition by factor components: some methodological issues. J. Econom. Supplement 9, 51–90 (2002)Google Scholar
  33. 33.
    Shorrocks, A.F.: The class of additively decomposable inequality measures. Econometrica 48, 613–625 (1980)CrossRefGoogle Scholar
  34. 34.
    Shorrocks, A.F.: Inequality decomposition by factor components. Econometrica 50(1), 193–211 (1982)CrossRefGoogle Scholar
  35. 35.
    Shorrocks, A.F.: The impact of income components on the distribution of family income. Q. J. Econ. 98, 311–326 (1983)CrossRefGoogle Scholar
  36. 36.
    Shorrocks, A.F.: Inequality decomposition by population subgroups. Econometrica 52, 1369–1385 (1984)CrossRefGoogle Scholar
  37. 37.
    Shorrocks, A.F.: Aggregation issues in inequality measurement. In: Eichhorn, W. (ed.) Measurement in Economics. Physica Verlag, Heidelberg (1988)Google Scholar
  38. 38.
    Shorrocks, A.F.: Decomposition Procedures for Distributional Analysis: A Unified Framework Based on the Shapley Value. mimeo, Department of Economics, University of Essex (1999)Google Scholar
  39. 39.
    Theil, H.: The measurement of inequality by components of income. Econ. Lett. 2, 197–199 (1979)CrossRefGoogle Scholar
  40. 40.
    Yu, L., Luo, R., Zhan, L.: Decomposing income inequality and policy implications in rural China. China World Econ. 15, 44–58 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  1. 1.STICERDLondon School of EconomicsLondonUK
  2. 2.DEAS and EconpubblicaUniversity of MilanMilanItaly

Personalised recommendations