Local, Geographical, and Contextual Variation in the Aggregation Pheromone Blend of the Spruce Beetle, Dendroctonus rufipennis (Coleoptera: Curculionidae)

Abstract

Prior research from trapping experiments using synthetic pheromone components suggested the existence of local and geographical variation in the pheromone system of the spruce beetle, Dendroctonus rufipennis (Kirby). To test hypotheses concerning variation in the spruce beetle’s aggregation pheromone blend, we extracted volatiles from the hindguts of individual spruce beetles sampled from sites in eastern Canada (Nova Scotia and Newfoundland) and western Canada (British Columbia and Alberta) and quantified the amounts of four known aggregation pheromone components within each sample. Chiral analyses were performed on a subset of samples. Frontalin (1,5-dimethyl-6,8-dioxabicyclo[3.2.1]octane) was more dominant in western Canada, whereas MCOL (1-methyl-2-cyclohexen-1-ol) and seudenol (3-methyl-2-cyclohexen-1-ol) were more dominant in the east. Verbenene (4-methylene-6,6-dimethylbicyclo[3.1.1]hept-2-ene) was prevalent only in one of our six sites (Rocky Mountain House, AB). Female beetles in Rocky Mountain House (AB) also produced a higher proportion of (+)-frontalin than females from the other sites, and a comparison to previously published data suggests additional geographic variation that was not captured among our sites. When paired with a male in a gallery, female spruce beetles produced pheromone blends with more frontalin and less MCOL compared to solitary female beetles. Our results show that variation in the spruce beetle’s pheromone blend exists at both large and small spatial scales, possibly a consequence of local selective pressures and assortative mating.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Anderbrant O, Schlyter F, Birgersson G (1985) Intraspecific competition affecting parents and offspring in the bark beetle Ips typographus. Oikos 45:89–98. https://doi.org/10.2307/3565226

    Article  Google Scholar 

  2. Barkawi LS, Francke W, Blomquist GJ, Seybold SJ (2003) Frontalin: de novo biosynthesis of an aggregation pheromone component by Dendroctonus spp. bark beetles (Coleoptera: Scolytidae). Insect Biochem Mol Biol 33:773–788. https://doi.org/10.1016/S0965-1748(03)00069-9

    CAS  Article  PubMed  Google Scholar 

  3. Birgersson G, Schlyter F, Bergström G, Löfqvist J (1988) Individual variation in aggregation pheromone content of the bark beetle, Ips typographus. J Chem Ecol 14:1737–1761. https://doi.org/10.1007/BF01014641

    CAS  Article  PubMed  Google Scholar 

  4. Bleiker KP, Meyers KJ (2017) Cold requirements to facilitate mass emergence of spruce beetle (Coleoptera: Curculionidae) adults in the laboratory. J Entomol Soc BC 114:68–72

    Google Scholar 

  5. Blomquist GJ, Figueroa-Teran R, Aw M, Song M, Gorzalski A, Abbott NL, Chang E, Tittiger C (2010) Pheromone production in bark beetles. Insect Biochem Mol Biol 40:699–712. https://doi.org/10.1016/j.ibmb.2010.07.013

    CAS  Article  PubMed  Google Scholar 

  6. Borden JH (1989) Semiochemicals and bark beetle populations: exploitation of natural phenomena by pest management strategists. Ecography 12:501–510. https://doi.org/10.1111/j.1600-0587.1989.tb00928.x

    Article  Google Scholar 

  7. Borden JH, Gries G, Chong LJ, Werner RA, Holsten EH, Wieser H, Dixon EA, Cerezke HF (1996) Regionally-specific bioactivity of two new pheromones for Dendroctonus rufipennis (Kirby) (Col., Scolytidae). J Appl Entomol 120:321–326. https://doi.org/10.1111/j.1439-0418.1996.tb01613.x

    Article  Google Scholar 

  8. Butlin R (1995) Genetic variation in mating signals and responses. In: Lambert D, Spencer H (eds) Speciation and the recognition concept: theory and application. Johns Hopkins University Press, Baltimore, pp 327–366

    Google Scholar 

  9. Cognato AI, Seybold SJ, Wood DL, Teale SA (1997) A cladistic analysis of pheromone evolution in Ips bark beetles (Coleoptera: Scolytidae). Evolution 51:313–318

    Article  Google Scholar 

  10. Cognato AI, Seybold SJ, Sperling FAH (1999) Incomplete barriers to mitochondrial gene flow between pheromone races of the North American pine engraver, Ips pini (Say) (Coleoptera, Scolytidae). Proc R Soc Lond Ser B Biol Sci 266:1843–1850. https://doi.org/10.1098/rspb.1999.0855

    Article  Google Scholar 

  11. Dyer EDA (1973) Spruce beetle aggregated by the synthetic pheromone frontalin. Can J For Res 3:486–494. https://doi.org/10.1139/x73-072

    Article  Google Scholar 

  12. Dyer EDA, Chapman J (1971) Attack by spruce beetle, induced by frontalin or billets with burrowing females. Can For Serv Bimonthly Res Notes 27:10–11

    Google Scholar 

  13. Espelie KE, Gamboa GJ, Grudzien TA, Bura EA (1994) Cuticular hydrocarbons of the paper wasp, Polistes fuscatus: a search for recognition pheromones. J Chem Ecol 20:1677–1687. https://doi.org/10.1007/BF02059889

    CAS  Article  PubMed  Google Scholar 

  14. Furniss MM, Kegley SJ (2014) Douglas-fir beetle. USDA For Serv, Forest Insect and Disease Leaflet 5, Washington, D.C

  15. Furniss MM, Baker BH, Hostetler BB (1976) Aggregation of spruce beetles (Coleoptera) to seudenol and repression of attraction by methylcyclohexenone in Alaska. Can Entomol 108:1297–1302. https://doi.org/10.4039/Ent1081297-12

    CAS  Article  Google Scholar 

  16. Garbutt R, Allen EA, Hawkes BC (2006) Spruce beetle and the forests of the southwest Yukon. Can For Serv Inf Rep BC-X-406, Pacific Forestry Centre, Victoria

  17. Gries G (1992) Ratios of geometrical and optical isomers of pheromones: irrelevant or important in scolytids? J Appl Entomol 114:240–243. https://doi.org/10.1111/j.1439-0418.1992.tb01122.x

    Article  Google Scholar 

  18. Gries G, Pierce HD, Lindgren BS, Borden JH (1988) New techniques for capturing and analyzing semiochemicals for scolytid Beetles (Coleoptera: Scolytidae). J Econ Entomol 81:1715–1720. https://doi.org/10.1093/jee/81.6.1715

    CAS  Article  Google Scholar 

  19. Gries G, Borden JH, Gries R, Lafontaine JP, Dixon EA, Wieser H, Whitehead AT (1992) 4-methylene-6,6-dimethylbicyclo[3.1.1]hept-2-ene (verbenene): new aggregation pheromone of the scolytid beetle Dendroctonus rufipennis. Naturwissenschaften 79:367–368. https://doi.org/10.1007/BF01140182

    CAS  Article  Google Scholar 

  20. Grosman DM, Salom SM, Ravlin FW, Young RW (1997) Geographic and gender differences in semiochemicals in emerging adult southern pine beetle (Coleoptera: Scolytidae). Ann Entomol Soc Am 90:438–446. https://doi.org/10.1093/aesa/90.4.438

    Article  Google Scholar 

  21. Hager BJ, Teale SA (1996) The genetic control of pheromone production and response in the pine engraver beetle Ips pini. Heredity 77:100–107. https://doi.org/10.1038/hdy.1996.112

    Article  Google Scholar 

  22. Hallett RH, Gries G, Gries R, Borden JH, Czyzewska E, Oehlschlager AC, Pierce HD, Angerilli NP, Rauf A (1993) Aggregation pheromones of two Asian palm weevils, Rhynchophorus ferrugineus and R. vulneratus. Naturwissenschaften 80:328–331. https://doi.org/10.1007/BF01141908

    CAS  Article  Google Scholar 

  23. Holsten EH (1994) The role of spruce beetle pheromones as management strategies in Alaska. In: Shea PJ (ed) Proceedings of the symposium on management of western bark beetles with pheromones: research and development. USDA For Serv, Gen Tech Rep PSW-GTR-150, Pacific Southwest Research Station, Albany, pp 11–14

  24. Horn A, Roux-Morabito G, Lieutier F, Kerdelhue C (2006) Phylogeographic structure and past history of the circum-Mediterranean species Tomicus destruens Woll. (Coleoptera: Scolytinae). Mol Ecol 15:1603–1615. https://doi.org/10.1111/j.1365-294X.2006.02872.x

    CAS  Article  PubMed  Google Scholar 

  25. Hunt DWA, Borden JH, Lindgren BS, Gries G (1989) The role of autoxidation of α-pinene in the production of pheromones of Dendroctonus ponderosae (Coleoptera: Scolytidae). Can J For Res 19:1275–1282. https://doi.org/10.1139/x89-194

    CAS  Article  Google Scholar 

  26. Isitt RL, Bleiker KP, Pureswaran DS, Hillier NK, Huber DP (2018) The effect of feeding and mate presence on the pheromone production of the spruce beetle (Coleoptera: Curculionidae). Environ Entomol 47:1293–1299. https://doi.org/10.1093/ee/nvy092

    CAS  Article  PubMed  Google Scholar 

  27. Kline LN, Schmitz RF, Rudinsky JA, Furniss MM (1974) Repression of spruce beetle (Coleoptera) attraction by methylcyclohexenone in Idaho. Can Entomol 106:485–491. https://doi.org/10.4039/Ent106485-5

    Article  Google Scholar 

  28. Kruse J, Pelz R (1991) Developing a public consensus on the management of spruce beetles on the Kenai Peninsula. Institute of Social and Economic Research, University of Alaska Anchorage

  29. Linn C Jr, Roelofs W (1995) Pheromone communication in moths and its role in the speciation process. In: Lambert D, Spencer H (eds) Speciation and the recognition concept: theory and application. Johns Hopkins University Press, Baltimore, pp 263–300

    Google Scholar 

  30. Lyon RL (1958) A useful secondary sex character in Dendroctonus bark beetles. Can Entomol 90:582–584. https://doi.org/10.4039/Ent90582-10

    Article  Google Scholar 

  31. Maroja LS, Bogdanowicz SM, Wallin KF, Raffa KF, Harrison RG (2007) Phylogeography of spruce beetles (Dendroctonus rufipennis Kirby) (Curculionidae: Scolytinae) in North America. Mol Ecol 16:2560–2573. https://doi.org/10.1111/j.1365-294X.2007.03320.x

    CAS  Article  PubMed  Google Scholar 

  32. McElfresh JS, Millar JG (2001) Geographic variation in the pheromone system of the saturniid moth Hemileuca eglanterina. Ecology 82:3505–3518. https://doi.org/10.1890/0012-9658(2001)082[3505:GVITPS]2.0.CO;2

    Article  Google Scholar 

  33. Miguel I, Iriondo M, Garnery L, Sheppard WS, Estonba A (2007) Gene flow within the M evolutionary lineage of Apis mellifera: role of the Pyrenees, isolation by distance and post-glacial re-colonization routes in the western Europe. Apidologie 38:141–155. https://doi.org/10.1051/apido:2007007

    CAS  Article  Google Scholar 

  34. Miller DR, Borden JH, Slessor KN (1989) Inter- and intrapopulation variation of the pheromone, ipsdienol produced by male pine engravers, Ips pini (Say) (Coleoptera: Scolytidae). J Chem Ecol 15:233. https://doi.org/10.1007/BF02027785

    CAS  Article  PubMed  Google Scholar 

  35. Pureswaran DS, Gries R, Borden JH (2004) Quantitative variation in monoterpenes in four species of conifers. Biochem Syst Ecol 32:1109–1136. https://doi.org/10.1016/j.bse.2004.04.006

    CAS  Article  Google Scholar 

  36. Pureswaran DS, Sullivan BT, Ayres MP (2008) High individual variation in pheromone production by tree-killing bark beetles (Coleoptera: Curculionidae: Scolytinae). Naturwissenschaften 95:33–44. https://doi.org/10.1007/s00114-007-0292-5

    CAS  Article  PubMed  Google Scholar 

  37. Pureswaran DS, Hofstetter RW, Sullivan BT, Grady AM, Brownie C (2016) Western pine beetle populations in Arizona and California differ in the composition of their aggregation pheromones. J Chem Ecol 42:404–413. https://doi.org/10.1007/s10886-016-0696-9

    CAS  Article  PubMed  Google Scholar 

  38. Raffa KF (2001) Mixed messages across multiple trophic levels: the ecology of bark beetle chemical communication systems. Chemoecology 11:49–65. https://doi.org/10.1007/PL00001833

    CAS  Article  Google Scholar 

  39. Raffa KF, Berryman AA (1983) The role of host plant resistance in the colonization behavior and ecology of bark beetles (Coleoptera: Scolytidae). Ecol Monogr 53:27–49. https://doi.org/10.2307/1942586

    Article  Google Scholar 

  40. Raffa KF, Dahlsten DL (1995) Differential responses among natural enemies and prey to bark beetle pheromones. Oecologia 102:17–23. https://doi.org/10.1007/BF00333305

    CAS  Article  PubMed  Google Scholar 

  41. Roelofs WL, Hill AS, Carde RT, Baker TC (1974) Two sex pheromone components of the tobacco budworm moth, Heliothis virescens. Life Sci 14:1555–1562. https://doi.org/10.1016/0024-3205(74)90166-0

    CAS  Article  PubMed  Google Scholar 

  42. Ross DW, Daterman GE, Munson AS (2005) Spruce beetle (Coleoptera: Scolytidae) response to traps baited with selected semiochemicals in Utah. West N Am Nat 65:123–126

    Google Scholar 

  43. Rudinsky J, Sartwell C Jr, Graves T, Morgan M (1974) Granular formulation of methylcyclohexenone: an antiaggregative pheromone of the Douglas fir and spruce bark beetles (Col., Scolytidae). Z Angew Entomol 75:254–263

    Article  Google Scholar 

  44. Ryall KL, Silk P, Thurston GS, Scarr TA, de Groot P (2013) Elucidating pheromone and host volatile components attractive to the spruce beetle, Dendroctonus rufipennis (Coleoptera: Curculionidae), in eastern Canada. Can Entomol 145:406–415. https://doi.org/10.4039/tce.2013.17

    Article  Google Scholar 

  45. Schmid M, Frye RH (1977) Spruce beetle in the Rockies. USDA For Serv, Gen Tech Rep RM-49. Rocky Mountain Forest and Range Experiment Station, Fort Collins

    Google Scholar 

  46. Setter RR, Borden JH (1999) Bioactivity and efficacy of MCOL and seudenol as potential attractive bait components for Dendroctonus rufipennis (Coleoptera: Scolytidae). Can Entomol 131:251–257. https://doi.org/10.4039/Ent131251-2

    Article  Google Scholar 

  47. Seybold SJ, Albers M, Katovich SA (2002) Eastern larch beetle. USDA For Serv, Forest Insect and Disease Leaflet 175, Washington, D.C

  48. Signorell A (2019) DescTools: Tools for descriptive statistics. R package version 0.99.28. https://cran.r-project.org/package=DescTools

  49. Symonds MRE, Elgar MA (2004) The mode of pheromone evolution: evidence from bark beetles. Proceedings of the Royal Society of London Series B: Biological Sciences 271:839–846. https://doi.org/10.1098/rspb.2003.2647

  50. Taft S, Najar A, Erbilgin N (2015) Pheromone production by an invasive bark beetle varies with monoterpene composition of its naïve host. J Chem Ecol 41:540–549. https://doi.org/10.1007/s10886-015-0590-x

    CAS  Article  PubMed  Google Scholar 

  51. Teale SA, Hager BJ, Webster FX (1994) Pheromone-based assortative mating in a bark beetle. Anim Behav 48:569–578. https://doi.org/10.1006/anbe.1994.1276

    Article  Google Scholar 

  52. Tittiger C, Blomquist GJ (2017) Pheromone biosynthesis in bark beetles. Curr Opin Insect Sci 24:68–74. https://doi.org/10.1016/j.cois.2017.09.005

    Article  PubMed  Google Scholar 

  53. Vité J, Pitman G, Fentiman A, Kinzer G (1972) 3-methyl-2-cyclohexen-1-ol isolated from Dendroctonus. Naturwissenschaften 59:469–469

    Article  Google Scholar 

  54. Werner RA (1994) Research on the use of semiochemicals to manage spruce beetles in Alaska. In: Shea PJ (ed) Proceedings of the symposium on management of western bark beetles with pheromones: research and development. USDA For Serv, Gen Tech Rep PSW-GTR-150, Pacific Southwest Research Station, Albany, pp 15–21

  55. Werner RA, Holsten EH (1995) Current status of research with the spruce beetle, Dendroctonus rufipennis. In: Salom SM, Hobson KR (eds) Application of semiochemicals for management of bark beetle infestations—proceedings of an informal conference. USDA For Serv, Gen Tech Rep INT-GTR-318, pp 23–29

  56. R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

Download references

Acknowledgements

Funding was provided by the University of Northern British Columbia, the Natural Sciences and Engineering Research Council of Canada, the Canada Research Chairs program, the Canada Foundation for Innovation, the British Columbia Knowledge Development Fund, SERG International, the Canadian Forest Service, and the Nova Scotia Department of Lands and Forestry and Alberta Agriculture and Forestry through SERG International and Forest Protection Limited. In-kind support was provided by the Canadian Forest Service, Acadia University, the Newfoundland and Labrador Department of Natural Resources, the Nova Scotia Department of Lands and Forestry and Alberta Agriculture and Forestry through SERG International and Forest Protection Limited, the Pacific Forestry Centre, and the University of Northern British Columbia.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. L. Isitt.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Isitt, R.L., Bleiker, K.P., Pureswaran, D.S. et al. Local, Geographical, and Contextual Variation in the Aggregation Pheromone Blend of the Spruce Beetle, Dendroctonus rufipennis (Coleoptera: Curculionidae). J Chem Ecol 46, 497–507 (2020). https://doi.org/10.1007/s10886-020-01185-3

Download citation

Keywords

  • Dendroctonus rufipennis
  • Bark beetle
  • Pheromone variation
  • Frontalin
  • Seudenol
  • Verbenene