Journal of Chemical Ecology

, Volume 44, Issue 3, pp 248–256 | Cite as

Body Odor and Sex: Do Cuticular Hydrocarbons Facilitate Sexual Attraction in the Small Hairy Maggot Blowfly?

  • Nathan J. Butterworth
  • Phillip G. Byrne
  • Paul A. Keller
  • James F. Wallman


Cuticular hydrocarbons (CHCs) play an important role as contact pheromones in insects, particularly in flies. However, for many fly taxa our understanding of the importance of CHCs in sexual communication is limited. Within the family Calliphoridae (blowflies), sex-specific differences in CHCs have been reported for several species, but there is no evidence that CHCs facilitate sexual behavior. In order to elucidate the function of CHCs in Calliphoridae, studies combining behavioral and chemical analyses are required. The present study used gas chromatography/mass spectrometry, along with behavioral assays, to assess whether CHCs facilitate sexual attraction in the small hairy maggot blowfly, Chrysomya varipes. The specific aims were to: 1) determine if CHCs differ between the sexes and 2) assess whether flies exhibit positive chemotaxis to CHCs of the opposite sex. Fifty-two hydrocarbons common to both sexes were identified, and quantitative differences for numerous CHCs were observed between the sexes. However, behavioral assays provided no evidence that flies were attracted to CHCs of the opposite sex, challenging the hypothesis that CHCs facilitate sexual attraction in Ch. varipes. In contrast to other blowflies, Ch. varipes males invest heavily in courtship displays and ornamentation, so we speculate that visual communication in this species may have relaxed sexual selection for chemical communication. More broadly, our findings support suggestions that CHCs may not always facilitate insect sexual communication.


Pheromone Hydrocarbon Insect Diptera Calliphoridae Blowfly 



We acknowledge financial assistance toward this work from UOW’s Centre for Sustainable Ecosystem Solutions, and thank Joshua Sharp-Heward for assistance with video analysis, and Stephanie Jones for intellectual input.

Supplementary material

10886_2018_943_MOESM1_ESM.docx (67 kb)
ESM 1 (DOCX 66 kb)


  1. Aak A, Birkemoe T, Knudsen G (2011) Efficient mass trapping: catching the pest, Calliphora vicina, (Diptera, Calliphoridae), of Norwegian Stockfish production. J Chem Ecol 37:924–931CrossRefPubMedGoogle Scholar
  2. Bachmann GE, Segura DF, Devescovi F, Juárez ML, Ruiz MJ, Vera MT, Cladera JL, Teal PEA, Fernández PC (2015) Male sexual behavior and pheromone emission is enhanced by exposure to guava fruit volatiles in Anastrepha fraterculus. PLoS One 10:e0124250CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barbosa RR, Braga MV, Blomquist GJ, de Carvalho Queiroz MM (2017) Cuticular hydrocarbon profiles as a chemotaxonomic tool for three blowfly species (Diptera: Calliphoridae) of forensic interest. J Nat Hist 51:1491–1498CrossRefGoogle Scholar
  4. Bernhardt V, Pogoda W, Verhoff MA, Toennes SW, Amendt J (2017) Estimating the age of the adult stages of the blow flies Lucilia sericata and Calliphora vicina (Diptera: Calliphoridae) by means of the cuticular hydrocarbon n-pentacosane. Sci Justice 57:361–365CrossRefPubMedGoogle Scholar
  5. Bontonou G, Wicker-Thomas C (2014) Sexual communication in the Drosophila genus. Insects 5:439–458CrossRefPubMedPubMedCentralGoogle Scholar
  6. Braga MV, Pinto ZT, de Carvalho Queiroz MM, Blomquist GJ (2016) Effect of age on cuticular hydrocarbon profiles in adult Chrysomya putoria (Diptera: Calliphoridae). Forensic Sci Int 259:e37–e47CrossRefPubMedGoogle Scholar
  7. Brown WV, Morton R, Lacey MJ, Spradbery JP, Mahon RJ (1998) Identification of the geographical source of adults of the old world screw-worm fly, Chrysomya bezziana villeneuve (Diptera: Calliphoridae), by multivariate analysis of cuticular hydrocarbons. Comp Biochem Physiol B 119:391–399CrossRefGoogle Scholar
  8. Caputo B, Dani FR, Horne GL, Petrarca V, Turillazzi S, Coluzzi M, Priestman AA, della Torre A (2005) Identification and composition of cuticular hydrocarbons of the major Afrotropical malaria vector Anopheles gambiae s.s. (Diptera: Culicidae): analysis of sexual dimorphism and age-related changes. J Mass Spectrom 40:1595–1604CrossRefPubMedGoogle Scholar
  9. Caputo B, Dani FR, Horne GL, N’Fale S, Diabate A, Turillazzi S, Coluzzi M, Costantini C, Priestman AA, Petrarca V, della Torre A (2007) Comparative analysis of epicuticular lipid profiles of sympatric and allopatric field populations of Anopheles gambiae s.s. molecular forms and An. arabiensis from Burkina Faso (West Africa). Insect Biochem Mol Biol 37:389–398CrossRefPubMedGoogle Scholar
  10. Carriére Y, Millar JG, McNeil JN, Miller D, Underbill EW (1988) Identification of female sex pheromone in alfalfa blotch leafminer, Agromyza frontella (Rondani) (Diptera: Agromyzidae). J Chem Ecol 14:947–956CrossRefPubMedGoogle Scholar
  11. Chung H, Carroll SB (2015) Wax, sex and the origin of species: dual roles of insect cuticular hydrocarbons in adaptation and mating. BioEssays 37:822–830CrossRefPubMedPubMedCentralGoogle Scholar
  12. Curtis S, Sztepanacz JL, White BE, Dyer KA, Rundle HD, Mayer P (2013) Epicuticular compounds of Drosophila subquinaria and D. recens: identification, quantification, and their role in female mate choice. J Chem Ecol 39:579–590CrossRefPubMedGoogle Scholar
  13. Dembeck LM, Böröczky K, Huang W, Schal C, Anholt RRH, Mackay TFC (2015) Genetic architecture of natural variation in cuticular hydrocarbon composition in Drosophila melanogaster. elife 4:e09861CrossRefPubMedPubMedCentralGoogle Scholar
  14. Doi M, Nemoto T, Nakanishi H, Kuwahara Y, Oguma Y (1997) Behavioral response of males to major sex pheromone component, (Z,Z)-5,25-hentriacontadiene, of Drosophila ananassae females. J Chem Ecol 23:2067–2078CrossRefGoogle Scholar
  15. Eichorn C, Hrabar M, Van Ryn E, Brodie B, Blake A, Gries G (2017) How flies are flirting on the fly. BMC Biol 15:1–9CrossRefGoogle Scholar
  16. Ferrar P (1987) A guide to the breeding habits and immature stages of Diptera Cyclorrhapha. E.J. Brill, CopenhagenGoogle Scholar
  17. Ferveur J (2005) Cuticular hydrocarbons: their evolution and roles in Drosophila pheromonal communication. Behav Genet 35:279–295CrossRefPubMedGoogle Scholar
  18. Frati F, Piersanti S, Conti E, Rebora M, Salerno G (2015) Scent of a dragonfly: sex recognition in a polymorphic coenagrionid. PLoS One 10:e0136697CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gołębiowski M, Cerkowniak M, Boguś MI, Włóka E, Dawgul M, Kamysz W, Stepnowski P (2013) Free fatty acids in the cuticular and internal lipids of Calliphora vomitoria and their antimicrobial activity. J Insect Physiol 59:416–429CrossRefPubMedGoogle Scholar
  20. Gotoh T, Nakamuta K, Tokoro M, Nakashima T (1999) Copulatory behavior and sex pheromones in sciarid fly, Lycoriella mali (Fitch) (Sciaridae: Diptera). Jpn J Appl Entomol Zool 43:181–184CrossRefGoogle Scholar
  21. Grant GG, Frech D, MacDonald L, Slessor KN, King GGS (1987) Copulation releaser pheromone in body scales of female whitemarked tussock moth, Orgyia leucostigma (Lepidoptera: Lymantriidae): identification and behavioral role. J Chem Ecol 13:345–356CrossRefPubMedGoogle Scholar
  22. Guédot C, Millar JG, Horton DR, Landolt PJ (2009) Identification of a sex attractant pheromone for male winterform pear psylla, Cacopsylla pyricola. J Chem Ecol 35:1437–1447CrossRefPubMedGoogle Scholar
  23. Ingleby F (2015) Insect cuticular hydrocarbons as dynamic traits in sexual communication. Insects 6:732–742CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ingleby FC, Hunt J, Hosken DJ (2013) Genotype-by-environment interactions for female mate choice of male cuticular hydrocarbons in Drosophila simulans. PLoS One 8:e67623CrossRefPubMedPubMedCentralGoogle Scholar
  25. Jones SD, Byrne PG, Wallman JF (2014) Mating success is predicted by the interplay between multiple male and female traits in the small hairy maggot blowfly. Anim Behav 97:193–200CrossRefGoogle Scholar
  26. Jones SD, Byrne PG, Wallman JF (2017) Exploring the influence of individual courtship behaviours on male mating success in a blow fly. J Insect Behav 30:528–543CrossRefGoogle Scholar
  27. Kassambra A, Mundt F (2017) factoextra: extract and visualize the results of multivariate data analyses. R Package Version 1.0.4.
  28. Keppner EM, Prang M, Engel KC, Ayasse M, Stökl J, Steiger S (2016) Beyond cuticular hydrocarbons: chemically mediated mate recognition in the subsocial burying beetle Nicrophorus vespilloides. J Chem Ecol 43:84–93CrossRefPubMedGoogle Scholar
  29. Kühbandner S, Sperling S, Mori K, Ruther J (2012) Deciphering the signature of cuticular lipids with contact sex pheromone function in a parasitic wasp. J Exp Biol 215:2471–2478CrossRefPubMedGoogle Scholar
  30. Kuo T-H, Yew JY, Fedina TY, Dreisewerd K, Dierick HA, Pletcher SD (2012) Aging modulates cuticular hydrocarbons and sexual attractiveness in Drosophila melanogaster. J Exp Biol 215:814–821CrossRefPubMedPubMedCentralGoogle Scholar
  31. Lubanga UK, Drijfhout FP, Farnier K, Steinbauer MJ (2016) The long and the short of mate attraction in a psylloid: do semiochemicals mediate mating in Aacanthocnema dobsoni Froggatt? J Chem Ecol 42:163–172CrossRefPubMedGoogle Scholar
  32. Majlat P, Erdös Z, Takás J (1974) Calculation and application of the retention indices in programmed-temperature gas chromatography. J Chromatogr A 91:89–103CrossRefGoogle Scholar
  33. Mardia KV, Kent JT, Bibby JM (1979) Multivariate analysis. Academic Press, LondonGoogle Scholar
  34. Mas F, Jallon J-M (2005) Sexual isolation and cuticular hydrocarbon differences between Drosophila santomea and Drosophila yakuba. J Chem Ecol 31:2747–2752CrossRefPubMedGoogle Scholar
  35. McKay P, Hatchett J (1984) Mating behavior and evidence of a female sex pheromone in the Hessian fly, Mayetiola destructor (Say) (Diptera: Cecidomyiidae). Ann Entomol Soc Am 77:616–620CrossRefGoogle Scholar
  36. McKinney RM, Vernier C, Ben-Shahar Y (2015) The neural basis for insect pheromonal communication. Curr Opin Insect Sci 12:86–92CrossRefPubMedPubMedCentralGoogle Scholar
  37. Menzel F, Blaimer BB, Schmitt T (2017) How do cuticular hydrocarbons evolve? Physiological constraints and climatic and biotic selection pressures act on a complex functional trait. Proc Biol Sci 284:20161727. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Norman GR, Streiner DL (1994) Biostatistics: the bare essentials. Mosby, St LouisGoogle Scholar
  39. Oliveira CC, Manfrin MH, Sene MF, Jackson LL, Etges WJ (2011) Variations on a theme: diversification of cuticular hydrocarbons in a clade of cactophilic Drosophila. BMC Evol Biol 11:179CrossRefPubMedPubMedCentralGoogle Scholar
  40. Paula MC, Antonialli-Junior WF, Mendonça A, Michelutti KB, Eulalio ADMM, Cardoso CAL, de Lima T, Von Zuben CJ (2016) Chemotaxonomic profile and intraspecific variation in the blow fly of forensic interest Chrysomya megacephala (Diptera: Calliphoridae). J Med Entomol 54:14–23CrossRefPubMedGoogle Scholar
  41. Pechal JL, Moore H, Drijfhout F, Benbow ME (2014) Hydrocarbon profiles throughout adult Calliphoridae aging: a promising tool for forensic entomology. Forensic Sci Int 245:65–71PubMedGoogle Scholar
  42. Pinto ML, Cangelosi B, Colazza S (2013) Female-released sex pheromones mediating courtship behavior in Lysiphlebus testaceipes males. J Insect Sci 13:53CrossRefPubMedPubMedCentralGoogle Scholar
  43. Pomonis J, Mackley J (1985) Gas chromatographic composition profiles of surface lipid extracts from screwworm compared by age, sex, colonization and geography. Southwest Entomol 10:65–76Google Scholar
  44. Putman RJ (1983) Carrion and dung: the decomposition of animal wastes. Edward Arnold, LondonGoogle Scholar
  45. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  46. Roux O, Gers C, Legal L (2008) Ontogenetic study of three Calliphoridae of forensic importance through cuticular hydrocarbon analysis. Med Vet Entomol 22:309–317CrossRefPubMedGoogle Scholar
  47. Ruther J, Döring M, Steiner S (2011) Cuticular hydrocarbons as contact sex pheromone in the parasitoid Dibrachys cavus. Entomol Exp Appl 140:59–68CrossRefGoogle Scholar
  48. Schwander T, Arbuthnott D, Gries R, Gries G, Nosil P, Crespi BJ (2013) Hydrocarbon divergence and reproductive isolation in Timema stick insects. BMC Evol Biol 13:151CrossRefPubMedPubMedCentralGoogle Scholar
  49. Shimomura K, Matsui S, Ohsawa K, Yajima S (2015) Saltational evolution of contact sex pheromone compounds of Callosobruchus rhodesianus (Pic). Chemoecology 26:15–23CrossRefGoogle Scholar
  50. Spradbery JP (2002) A manual for the diagnosis of screw-worm fly. Department of Agriculture, Fisheries and Forestry – Australia, CanberraGoogle Scholar
  51. Stinziano JR, Sové RJ, Rundle HD, Sinclair BJ (2015) Rapid desiccation hardening changes the cuticular hydrocarbon profile of Drosophila melanogaster. Comp Biochem Physiol A 180:38–42CrossRefGoogle Scholar
  52. Stoffolano JG, Schauber E, Yin C-M, Tillman JA, Blomquist GJ (1997) Cuticular hydrocarbons and their role in copulatory behavior in Phormia regina (Meigen). J Insect Physiol 43:1065–1076CrossRefPubMedGoogle Scholar
  53. Sun X, Zhang X, Wu G, Li X, Liu F, Xin Z, Zhang J (2017) n-Pentacosane acts as both contact and volatile pheromone in the tea weevil, Myllocerinus aurolineatus. J Chem Ecol 43:557–562CrossRefPubMedGoogle Scholar
  54. Svensson G, Gündüz E, Sjöberg N, Hedenström E, Lassance J-M, Wang H-L, Löfstedt C, Anderbrant O (2014) Identification, synthesis, and behavioral activity of 5,11-Dimethylpentacosane, a novel sex pheromone component of the greater wax moth, Galleria Mellonella (L.) J Chem Ecol 40:387–395CrossRefPubMedGoogle Scholar
  55. Tang Y, Horikoshi M, Wenxuan L (2016) ggfortify: unified interface to visualize statistical result of popular R packages. The R Journal 8.2:478–489Google Scholar
  56. Thomas ML, Simmons LW (2008) Sexual dimorphism in cuticular hydrocarbons of the Australian field cricket Teleogryllus oceanicus (Orthoptera: Gryllidae). J Insect Physiol 54:1081–1089CrossRefPubMedGoogle Scholar
  57. Thompson F (2007) The new Diptera Site. Accessed 23 Aug 2017
  58. Trabalon M, Campan M, Clement J-L, Lange C, Miquel M-T (1992) Cuticular hydrocarbons of Calliphora vomitoria (Diptera): relation to age and sex. Gen Comp Endocrinol 85:208–216CrossRefPubMedGoogle Scholar
  59. Vaníčková L, Virgilio M, Tomčala A, Břízová R, Ekesi S, Hoskovec M, Kalinová B, Do Nascimento RR, De Meyer M (2014) Resolution of three cryptic agricultural pests (Ceratitis fasciventris, C. anonae, C. rosa, Diptera: Tephritidae) using cuticular hydrocarbon profiling. Bull Entomol Res 104:631–638CrossRefPubMedGoogle Scholar
  60. Warton DI, Hui FK (2011) The arcsine is asinine: the analysis of proportions in ecology. Ecology 92:3–10CrossRefPubMedGoogle Scholar
  61. Weiss I, Hofferberth J, Ruther J, Stökl J (2015) Varying importance of cuticular hydrocarbons and iridoids in the species-specific mate recognition pheromones of three closely related Leptopilina species. Front Ecol Evol.
  62. Wicker-Thomas C (2007) Pheromonal communication involved in courtship behavior in Diptera. J Insect Physiol 53:1089–1100CrossRefPubMedGoogle Scholar
  63. Witzgall P, Kirsch P, Cork A (2010) Sex pheromones and their impact on pest management. J Chem Ecol 36:80–100CrossRefPubMedGoogle Scholar
  64. Xiao W, Matsuyama S, Ando T, Millar J, Honda H (2012) Unsaturated cuticular hydrocarbons synergize responses to sex attractant pheromone in the yellow peach moth, Conogethes punctiferalis. J Chem Ecol 38:1143–1150CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Sustainable Ecosystem Solutions, School of Biological SciencesUniversity of WollongongWollongongAustralia
  2. 2.Centre for Medical and Molecular Bioscience, School of ChemistryUniversity of WollongongWollongongAustralia

Personalised recommendations