Journal of Chemical Ecology

, Volume 44, Issue 4, pp 339–353 | Cite as

Larval Diet Affects Male Pheromone Blend in a Laboratory Strain of the Medfly, Ceratitis capitata (Diptera: Tephritidae)

  • Daniele Merli
  • Barbara Mannucci
  • Federico Bassetti
  • Federica Corana
  • Marco Falchetto
  • Anna R. Malacrida
  • Giuliano Gasperi
  • Francesca Scolari
Article

Abstract

The Mediterranean fruit fly (medfly) Ceratitis capitata is a polyphagous pest of fruits and crops with a worldwide distribution. Its ability to use different larval hosts may have multiple effects, including impacts on adult reproductive biology. The male sex pheromone, which plays a key role in attracting both other males to lekking arenas and females for mating, is a mixture of chemical compounds including esters, acids, alkanes and terpenes known to differ between laboratory strains and wild-type populations. The relationship between larval diet and adult pheromone composition remains unexplored. Here, we investigated the effect of larval diet, including laboratory media and fresh fruits, on the composition of the male pheromone mixture. Using Headspace Solid Phase Microextraction we collected the pheromone emitted by males reared as larvae on different substrates and found both qualitative and quantitative differences. A number of alkanes appeared to be typical of the pheromone of males reared on wheat bran-based larval medium, and these may be cuticular hydrocarbons involved in chemical communication. We also detected differences in pheromone composition related to adult male age, suggesting that variations in hormonal levels and/or adult diet could also play a role in determining the chemical profile emitted. Our findings highlight the plasticity of dietary responses of C. capitata, which may be important in determining the interactions of this pest with the environment and with conspecifics. These results also have applied relevance to increase the mating competitiveness of mass-reared C. capitata used in Sterile Insect Technique programs.

Keywords

Medfly Polyphagy Larval diet Pheromone Solid Phase Microextraction 

Notes

Acknowledgements

We thank Lorenzo Ghiringhelli for technical support, Dr. Lucie Vaníčková for providing (E,E)-α-farnesene and (Z,E)-α-farnesene, Dr. Royah Vaezi, Dr. Nicholas C. Manoukis and two anonymous reviewers for the help provided in improving the manuscript.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

10886_2018_939_MOESM1_ESM.pdf (1.4 mb)
ESM 1 (PDF 1427 kb)

References

  1. Alfaro C, Vacas S, Zarzo M, Navarro-Llopis V, Primo J (2011) Solid phase microextraction of volatile emissions of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae): influence of fly sex, age, and mating status. J Agric Food Chem 59:298–306.  https://doi.org/10.1021/jf104183c CrossRefPubMedGoogle Scholar
  2. Anjos-Duarte CS, Costa AM, Joachim-Bravo IS (2011) Influence of female age on variation of mate choice behavior in Mediterranean fruit fly (Diptera: Tephritidae). J Insect Behav 24:11–21CrossRefGoogle Scholar
  3. Arienti M, Antony C, Wicker-Thomas C, Delbecque JP, Jallon JM (2010) Ontogeny of Drosophila melanogaster female sex-appeal and cuticular hydrocarbons. Integr Zool 5:272–282.  https://doi.org/10.1111/j.1749-4877.2010.00213.x CrossRefPubMedGoogle Scholar
  4. Bachmann GE, Segura DF, Devescovi F, Juárez ML, Ruiz MJ, Vera MT, Cladera JL, Teal PEA, Fernández PC (2015) Male sexual behavior and pheromone emission is enhanced by exposure to guava fruit volatiles in Anastrepha fraterculus. PLoS One 10:e0124250.  https://doi.org/10.1371/journal.pone.0124250 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Baker R, Bacon AJ (1985) The identification of spiroacetals in the volatile secretions of two species of fruit fly (Dacus dorsalis, Dacus curcurbitae). Experientia 41:1484–1485CrossRefGoogle Scholar
  6. Baker R, Herbert RH, Lomer RA (1982) Chemical components of the rectal gland secretions of male Dacus cucurbitae, the melon fly. Experientia 38:232–233CrossRefGoogle Scholar
  7. Baker R, Herbert RH, Grant GG (1985) Isolation and identification of the sex-pheromone of the Mediterranean fruit fly, Ceratitis capitata (Wied). J Chem Soc Lond Chem Commun (12):824–825.  https://doi.org/10.1039/C39850000824
  8. Baker PS, Howse PE, Ondarza RN, Reyes J (1990) Field trials of synthetic sex-pheromone components of the male Mediterranean fruit-fly (Diptera, Tephritidae) in southern Mexico. J Econ Entomol 83:2235–2245CrossRefGoogle Scholar
  9. Behar A, Yuval B, Jurkevitch E (2005) Enterobacteria-mediated nitrogen fixation in natural populations of the fruit fly Ceratitis capitata. Mol Ecol 14:2637–2643.  https://doi.org/10.1111/j.1365-294X.2005.02615.x CrossRefPubMedGoogle Scholar
  10. Behar A, Yuval B, Jurkevitch E (2008) Gut bacterial communities in the Mediterranean fruit fly (Ceratitis capitata) and their impact on host longevity. J Insect Physiol 54:1377–1383.  https://doi.org/10.1016/j.jinsphys.2008.07.011 CrossRefPubMedGoogle Scholar
  11. Belles X, Martin D, Piulachs MD (2005) The mevalonate pathway and the synthesis of juvenile hormone in insects. Annu Rev Entomol 50:181–199.  https://doi.org/10.1146/annurev.ento.50.071803.130356 CrossRefPubMedGoogle Scholar
  12. Biasazin TD, Karlsson MF, Hillbur Y, Seyoum E, Dekker T (2014) Identification of host blends that attract the African invasive fruit fly, Bactrocera invadens. J Chem Ecol 40:966–976.  https://doi.org/10.1007/s10886-014-0501-6 CrossRefPubMedGoogle Scholar
  13. Bilen J, Atallah J, Azanchi R, Levine JD, Riddiford LM (2013) Regulation of onset of female mating and sex pheromone production by juvenile hormone in Drosophila melanogaster. Proc Natl Acad Sci U S A 110:18321–18326.  https://doi.org/10.1073/pnas.1318119110 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Blackwell A, Johnson SN (2000) Electrophysiological investigation of larval water and potential oviposition chemo-attractants for Anopheles gambiae s.s. Ann Trop Med Parasitol 94:389–398CrossRefPubMedGoogle Scholar
  15. Blomquist GJ, Bagnères AG (2010) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge.  https://doi.org/10.1017/CBO9780511711909 CrossRefGoogle Scholar
  16. Blomquist GJ, Vogt RG (2003) Insect pheromone biochemistry and molecular biology: the biosynthesis and detection of pheromones and plant volatiles, 1st edn. Elsevier, San DiegoGoogle Scholar
  17. Bohbot JD, Jones PL, Wang G, Pitts RJ, Pask GM, Zwiebel LJ (2011) Conservation of indole responsive odorant receptors in mosquitoes reveals an ancient olfactory trait. Chem Senses 36:149–160.  https://doi.org/10.1093/chemse/bjq105 CrossRefPubMedGoogle Scholar
  18. Buettner A, Schieberle P (2001) Evaluation of aroma differences between hand-squeezed juices from valencia late and navel oranges by quantitation of key odorants and flavor reconstitution experiments. J Agric Food Chem 49:2387–2394CrossRefPubMedGoogle Scholar
  19. Carlson DA, Yocom SR (1986) Cuticular hydrocarbons from 6 species of Tephritid fruit-flies. Arch Insect Biochem Physiol 3:397–412CrossRefGoogle Scholar
  20. Eberhard W (2000) Sexual behavior and sexual selection in the Mediterranean fruit fly, Ceratitis capitata (Dacinae: Ceratitidini). In: Aluja M, Norrbom A (eds) Fruit flies (Tephritidae): phylogeny and evolution of behavior. CRC Press, Boca Raton, pp 457–489Google Scholar
  21. Ekesi S, Mohamed SA (2011) Mass rearing and quality control parameters for tephritid fruit flies of economic importance in Africa. In: Akyar I (ed) Wide spectra of quality control. InTech, Rijeka.  https://doi.org/10.5772/21330 Google Scholar
  22. El-Sayed AM, Suckling DM, Wearing CH, Byers JA (2006) Potential of mass trapping for long-term pest management and eradication of invasive species. J Econ Entomol 99:1550–1564CrossRefPubMedGoogle Scholar
  23. Enkerlin WR (2005) Impact of fruit fly control programmes using the sterile insect technique. In: Sterile insect technique: principles and practice in area-wide integrated pest management. Springer, The Netherlands, pp 651–676CrossRefGoogle Scholar
  24. Farine JP, Ferveur JF, Everaerts C (2012) Volatile Drosophila cuticular pheromones are affected by social but not sexual experience. PLoS One 7:e40396.  https://doi.org/10.1371/journal.pone.0040396 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Fay HAC (1989) Multi-host species of fruit fly. In: Robinson AS, Hooper G (eds) Fruit flies: their biology, natural enemies and control, vol 3B. Elsevier, Amsterdam, pp 129–140Google Scholar
  26. Fedina TY, Kuo TH, Dreisewerd K, Dierick HA, Yew JY, Pletcher SD (2012) Dietary effects on cuticular hydrocarbons and sexual attractiveness in Drosophila. PLoS One 7:e49799.  https://doi.org/10.1371/journal.pone.0049799 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Feron M (1962) L’instinct de reproduction chez la mouche méditerranéenne des fruits Ceratitis capitata Wied (Diptera: Trypetidae). Comportement sexuel. Comportement de ponte. Rev Pathol Veg Ent Agric France 41:1–129Google Scholar
  28. Finney GL (1956) A fortified carrot medium for mass-culture of the oriental fruit fly and certain other tephritids. J Econ Entomol 49:135–136CrossRefGoogle Scholar
  29. Flath RA, Jang EB, Light DM, Mon TR, Carvalho L, Binder RG, John JO (1993) Volatile pheromonal emissions from the male Mediterranean fruit-fly - effects of fly age and time of day. J Agric Food Chem 41:830–837CrossRefGoogle Scholar
  30. Francke W et al (2002) Female sex pheromone of Cameraria ohridella Desch. and dim. (Lepidoptera: Gracillariidae): structure confirmation, synthesis and biological activity of (8E,10Z)-8,10-tetradecadienal and some analogues. Z Naturforsch C 57:739–752CrossRefPubMedGoogle Scholar
  31. Furstenberg-Hagg J, Zagrobelny M, Bak S (2013) Plant defense against insect herbivores. Int J Mol Sci 14:10242–10297.  https://doi.org/10.3390/ijms140510242 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Gabrieli P, Scolari F (2016) Delivery of nucleic acids through embryo microinjection in the worldwide agricultural pest insect, Ceratitis capitata. J Vis Exp 116.  https://doi.org/10.3791/54528
  33. Gikonyo NK, Lux S, Nemeye P (2005) Variation in volatiles from fruits of mango and marula attractive to the mango fruit fly, Ceratitis cosyra (Walker). East and Central African Journal of Pharmaceutical Sciences 6:3–8Google Scholar
  34. Goncalves GB et al (2006) Comparison of the volatile components released by calling males of Ceratitis capitata (Diptera: Tephritidae) with those extractable from the salivary glands. Fla Entomol 89:375–379CrossRefGoogle Scholar
  35. Goncalves GB, Silva CE, Mendonca ADL, Vanickova L, Tomcala A, do Nascimento RR (2013) Pheromone communication in Anastrepha obliqua (Diptera: Tephritidae): a comparison of the volatiles and salivary gland extracts of two wild populations. Fla Entomol 96:1365–1374CrossRefGoogle Scholar
  36. Gordillo DJC (1999) Mass rearing methods for fruit fly. In: Workshop on the South American fruit fly, Anastrepha fraterculus (Wied.); advances in artificial rearing, taxonomic status and biological studies., Vina del Mar (Chile), 1999. Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, pp 59–71Google Scholar
  37. Groot AT, Schofl G, Inglis O, Donnerhacke S, Classen A, Schmalz A, Santangelo RG, Emerson J, Gould F, Schal C, Heckel DG (2014) Within-population variability in a moth sex pheromone blend: genetic basis and behavioural consequences. Proc Biol Sci 281:20133054.  https://doi.org/10.1098/rspb.2013.3054 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Harraca V, Syed Z, Guerin PM (2009) Olfactory and behavioural responses of tsetse flies, Glossina spp., to rumen metabolites. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 195:815–824.  https://doi.org/10.1007/s00359-009-0459-y CrossRefPubMedGoogle Scholar
  39. Heath RR, Landolt PJ, Tumlinson JH, Chambers DL, Murphy RE, Doolittle RE, Dueben BD, Sivinski J, Calkins CO (1991) Analysis, synthesis, formulation, and field testing of three major components of male mediterranean fruit fly pheromone. J Chem Ecol 17:1925–1940.  https://doi.org/10.1007/BF00993739 CrossRefPubMedGoogle Scholar
  40. Heath RR, Epsky DD, Midgarden D, Katsoyannos BI (2004) Efficacy of 1,4-diamino-butane (putrescine) in a food-based synthetic attractant for capture of Mediterranean and Mexican fruit flies (Diptera: Tephritidae). J Econ Entomol 97:1126–1131CrossRefPubMedGoogle Scholar
  41. Henneken J, Goodger JQD, Jones TM, Elgar MA (2017) Diet-mediated pheromones and signature mixtures can enforce signal reliability. Front Ecol Evol 4:1–13.  https://doi.org/10.3389/fevo.2016.00145 CrossRefGoogle Scholar
  42. IAEA (2003) Trapping guidelines for area-wide fruit fly programmes. Joint FAO/IAEA Programme, ViennaGoogle Scholar
  43. Jacobson M, Ohinata K, Chambers DL, Jones WA, Fujimoto MS (1973) Insect sex attractants. 13. Isolation, identification, and synthesis of sex pheromones of the male Mediterranean fruit fly. J Med Chem 16:248–251CrossRefPubMedGoogle Scholar
  44. Jang EB, Light DM (1996) Attraction of female Mediterranean fruit flies to identified components of the male-produced pheromone: qualitative aspects of major, intermediate, and minor components. In: McPheron BA, Steck GJ (eds) Fruit fly pests: a world assessment of their biology and management. St. Lucie Press, Delray Beach, pp 115–121Google Scholar
  45. Jang EB, Light DM, Dickens JC, McGovern TP, Nagata JT (1989) Electroantennogram responses of mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae) to trimedlure and itstrans isomers. J Chem Ecol 15:2219–2231.  https://doi.org/10.1007/BF01014111 CrossRefPubMedGoogle Scholar
  46. Jang EB, Light DM, Binder RG, Flath RA, Carvalho LA (1994) Attraction of female mediterranean fruit flies to the five major components of male-produced pheromone in a laboratory flight tunnel. J Chem Ecol 20:9–20.  https://doi.org/10.1007/BF02065987 CrossRefPubMedGoogle Scholar
  47. Jayanthi PDK, Woodcock CM, Caulfield J, Birkett MA, Bruce TJA (2012) Isolation and identification of host cues from mango, Mangifera indica, that attract gravid female oriental fruit fly, Bactrocera dorsalis. J Chem Ecol 38:361–369CrossRefPubMedGoogle Scholar
  48. Jeanbourquin P, Guerin PM (2007) Chemostimuli implicated in selection of oviposition substrates by the stable fly Stomoxys calcitrans. Med Vet Entomol 21:209–216.  https://doi.org/10.1111/j.1365-2915.2007.00685.x CrossRefPubMedGoogle Scholar
  49. Joachim-Bravo IS, Anjos CS, Costa AM (2009) The role of protein in the sexual behaviour of males of Ceratitis capitata (Diptera: Tephritidae): mating success, copula duration and number of copulations. Zoologia-Curitiba 26:407–412CrossRefGoogle Scholar
  50. Juan-Blasco M, San Andrés V, Martínez-Utrillas MA, Argilés R, Pla I, Urbaneja A, Sabater-Muñoz B (2013) Alternatives to ginger root oil aromatherapy for improved mating performance of sterile Ceratitis Capitata (Diptera: Tephritidae) males. J Appl Entomol 137:244–251.  https://doi.org/10.1111/j.1439-0418.2011.01688.x CrossRefGoogle Scholar
  51. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45:D353–D361.  https://doi.org/10.1093/nar/gkw1092 CrossRefPubMedGoogle Scholar
  52. Kaspi R, Taylor PW, Yuval B (2000) Diet and size influence sexual advertisement and copulatory success of males in Mediterranean fruit fly leks. Ecol Entomol 25:279–284CrossRefGoogle Scholar
  53. Kaspi R, Mossinson S, Drezner T, Kamensky B, Yuval B (2002) Effects of larval diet on development rates and reproductive maturation of male and female Mediterranean fruit flies. Physiol Entomol 27:29–38CrossRefGoogle Scholar
  54. Kouloussis NA, Katsoyannos BI, Papadopoulos NT, Ioannou CS, Iliadis IV (2013) Enhanced mating competitiveness of Ceratitis capitata males following exposure to citrus compounds. J Appl Entomol 137:30–38.  https://doi.org/10.1111/j.1439-0418.2010.01535.x CrossRefGoogle Scholar
  55. Krainacker DA, Carey JR, Vargas RI (1987) Effect of larval host on life history traits of the mediterranean fruit fly, Ceratitis capitata. Oecologia 73:583–590.  https://doi.org/10.1007/BF00379420 CrossRefPubMedGoogle Scholar
  56. Krajicek J, Havlikova M, Bursova M, Ston M, Cabala R, Exnerova A, Stys P, Bosakova Z (2016) Comparative analysis of volatile defensive secretions of three species of Pyrrhocoridae (Insecta: Heteroptera) by gas chromatography-mass spectrometric method. PLoS One 11:e0168827.  https://doi.org/10.1371/journal.pone.0168827 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Krupp JJ, Billeter JC, Wong A, Choi C, Nitabach MN, Levine JD (2013) Pigment-dispersing factor modulates pheromone production in clock cells that influence mating in Drosophila. Neuron 79:54–68.  https://doi.org/10.1016/j.neuron.2013.05.019 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Kuo TH, Fedina TY, Hansen I, Dreisewerd K, Dierick HA, Yew JY, Pletcher SD (2012a) Insulin signaling mediates sexual attractiveness in Drosophila. PLoS Genet 8:e1002684.  https://doi.org/10.1371/journal.pgen.1002684 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Kuo TH, Yew JY, Fedina TY, Dreisewerd K, Dierick HA, Pletcher SD (2012b) Aging modulates cuticular hydrocarbons and sexual attractiveness in Drosophila melanogaster. J Exp Biol 215:814–821.  https://doi.org/10.1242/jeb.064980 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Landolt PJ, Phillips TW (1997) Host plant influences on sex pheromone behavior of phytophagous insects. Annu Rev Entomol 42:371–391.  https://doi.org/10.1146/annurev.ento.42.1.371 CrossRefPubMedGoogle Scholar
  61. Landolt PJ, Heath RR, Chambers DL (1992) Oriented flight responses of female mediterranean fruit-flies to calling males, odor of calling males, and a synthetic pheromone blend. Entomol Exp Appl 65:259–266CrossRefGoogle Scholar
  62. Lauzon CR, McCombs SD, Potter SE, Peabody NC (2009) Establishment and vertical passage of Enterobacter (Pantoea) agglomerans and Klebsiella pneumoniae through all life stages of the Mediterranean fruit fly (Diptera: Tephritidae). Ann Entomol Soc Am 102:85–95CrossRefGoogle Scholar
  63. Lee JH, Wood TK, Lee J (2015) Roles of indole as an interspecies and interkingdom signaling molecule. Trends Microbiol 23:707–718.  https://doi.org/10.1016/j.tim.2015.08.001 CrossRefPubMedGoogle Scholar
  64. Leftwich PT, Nash WJ, Friend LA, Chapman T (2017) Adaptation to divergent larval diets in the medfly, Ceratitis capitata. Evolution 71:289–303.  https://doi.org/10.1111/evo.13113 CrossRefPubMedGoogle Scholar
  65. Light DM, Jang EB, Binder RG, Flath RA, Kint S (1999) Minor and intermediate components enhance attraction of female Mediterranean fruit flies to natural male odor pheromone and its synthetic major components. J Chem Ecol 25:2757–2777CrossRefGoogle Scholar
  66. Liquido NJ, McQuate GT, Suiter KA (2014) MEDHOST: an encyclopedic bibliography of the host plants of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), version 2.0. United States Department of Agriculture, Center for Plant Health Science and Technology, RaleighGoogle Scholar
  67. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2012) Molecular cell biology, 7th edition edn. W.H. Freeman & Co Ltd, New YorkGoogle Scholar
  68. Lombard J, Moreira D (2011) Origins and early evolution of the mevalonate pathway of isoprenoid biosynthesis in the three domains of life. Mol Biol Evol 28:87–99.  https://doi.org/10.1093/molbev/msq177 CrossRefPubMedGoogle Scholar
  69. Manoukis NC (2016) To catch a fly: landing and capture of Ceratitis capitata in a Jackson trap with and without an insecticide. PLoS One 11:e0149869.  https://doi.org/10.1371/journal.pone.0149869 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Marchini D, Rosetto M, Dallai R, Marri L (2002) Bacteria associated with the oesophageal bulb of the medfly Ceratitis capitata (Diptera:Tephritidae). Curr Microbiol 44:120–124CrossRefPubMedGoogle Scholar
  71. Morgan E (2010) Biosynthesis in insects: advanced edition, 2dn edn. RSC Publishing, CambridgeGoogle Scholar
  72. Ohinata K, Ashraf M, Harris EJ (1977) Mediterranean fruit flies: sterility and sexual competitiveness in the laboratory after treatment with gamma irradiation in air, carbon dioxide, helium, nitrogen or partial vacuum. J Econ Entomol 70:165–168CrossRefPubMedGoogle Scholar
  73. Ohinata K, Jacobson M, Nakagawa S, Urago T, Fujimoto M, Higa H (1979) Methyl (E)-6-nonenoate - new Mediterranean fruit fly (Diptera: Tephritidae) male attractant. J Econ Entomol 72:648–650CrossRefGoogle Scholar
  74. Papachristos DP, Papadopoulos NT (2009) Are citrus species favorable hosts for the Mediterranean fruit fly? A demographic perspective. Entomol Exp Appl 132:1–12CrossRefGoogle Scholar
  75. Papachristos DP, Papadopoulos NT, Nanos GD (2008) Survival and development of immature stages of the Mediterranean fruit fly (Diptera: Tephritidae) in citrus fruit. J Econ Entomol 101:866–872CrossRefPubMedGoogle Scholar
  76. Papanastasiou SA, Diamantidis AD, Nakas CT, Carey JR, Papadopoulos NT (2011) Dual reproductive cost of aging in male medflies: dramatic decrease in mating competitiveness and gradual reduction in mating performance. J Insect Physiol 57:1368–1374CrossRefPubMedPubMedCentralGoogle Scholar
  77. Prokopy RJ, Hendrichs J (1979) Mating-behavior of Ceratitis capitata (Diptera, Tephritidae) on a field-caged host tree. Ann Entomol Soc Am 72:642–648CrossRefGoogle Scholar
  78. Putruele MTG (1996) Hosts for Ceratitis capitata and Anastrepha fraterculus in the northeastern province of Entre Rios, Argentina. In: McPheron BA, Steck GJ (eds) Fruit fly pests: a world assessment of their biology and management. St. Lucie Press, Delray Beach, pp 343–345Google Scholar
  79. Qiao Y, Xie B, Zhang Y, Zhang Y, Pan S (2008) Characterization of aroma active compounds in blood orange juice by solid phase microextraction and gas chromatography-mass spectrometry-olfactometry. Se Pu 26:509–514PubMedGoogle Scholar
  80. Qiu Y, Tittiger C, Wicker-Thomas C, le Goff G, Young S, Wajnberg E, Fricaux T, Taquet N, Blomquist GJ, Feyereisen R (2012) An insect-specific P450 oxidative decarbonylase for cuticular hydrocarbon biosynthesis. Proc Natl Acad Sci U S A 109:14858–14863CrossRefPubMedPubMedCentralGoogle Scholar
  81. R Core Team (2014) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna http://www.R-project.org/ Google Scholar
  82. Raptopoulos D, Haniotakis G, Koutsaftikis A, Kelly D, Mavraganis V (1995) Biological-activity of chemicals identified from extracts and volatiles of male - Rhagoletis cerasi. J Chem Ecol 21:1287–1297CrossRefPubMedGoogle Scholar
  83. Reddy GV, Guerrero A (2004) Interactions of insect pheromones and plant semiochemicals. Trends Plant Sci 9:253–261.  https://doi.org/10.1016/j.tplants.2004.03.009 CrossRefPubMedGoogle Scholar
  84. Rehman S, Ahad A, Ahmad I, Ghaffoor A (1983) Qualitative aspects of various cultivars of sweet oranges (Citrus sinensis). Pak J Agric Res 4:22–28Google Scholar
  85. Robacker DC, Bartelt RJ (1997) Chemicals attractive to Mexican fruit fly from Klebsiella pneumoniae and Citrobacter freundii cultures sampled by solid-phase microextraction. J Chem Ecol 23:2897–2915CrossRefGoogle Scholar
  86. Rocca JR, Nation JL, Strekowski L, Battiste MA (1992) Comparison of volatiles emitted by male caribbean and mexican fruit flies. J Chem Ecol 18:223–244.  https://doi.org/10.1007/BF00993755 CrossRefPubMedGoogle Scholar
  87. Roriz AKP, Joachim-Bravo LS (2013) The relevance of age and nutritional status on the mating competitiveness of medfly males (Diptera: Teprhitidae). Zoologia-Curitiba 30:506–512CrossRefGoogle Scholar
  88. Saul SH (1982) Rosy-like mutant of the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae), and its potential for use in a genetic sexing program. Ann Entomol Soc Am 75:480–483CrossRefGoogle Scholar
  89. Shelly TE, Kennelly S (2002) Influence of male diet on male mating success and longevity and female remating in the Mediterranean fruit fly (Diptera : Tephritidae) under laboratory conditions. Fla Entomol 85:572–579CrossRefGoogle Scholar
  90. Shelly TE, McInnis DO (2003) Influence of adult diet on the mating success and survival of male Mediterranean fruit flies (Diptera : Tephritidae) from two mass-rearing strains on field-caged host trees. Fla Entomol 86:340–344CrossRefGoogle Scholar
  91. Shelly TE, Kennelly SS, McInnis DO (2002) Effect of adult diet on signaling activity, mate attraction, and mating success in male mediterranean fruit flies (Diptera : Tephritidae). Fla Entomol 85:150–155CrossRefGoogle Scholar
  92. Shelly TE, Edu J, Pahio E (2011) Female medflies mate selectively with young males but gain no apparent fitness benefits. J Insect Behav 24:55–66CrossRefGoogle Scholar
  93. Siciliano P, He XL, Woodcock C, Pickett JA, Field LM, Birkett MA, Kalinova B, Gomulski LM, Scolari F, Gasperi G, Malacrida AR, Zhou JJ (2014a) Identification of pheromone components and their binding affinity to the odorant binding protein CcapOBP83a-2 of the Mediterranean fruit fly, Ceratitis capitata. Insect Biochem Mol Biol 48:51–62.  https://doi.org/10.1016/j.ibmb.2014.02.005 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Siciliano P, Scolari F, Gomulski LM, Falchetto M, Manni M, Gabrieli P, Field LM, Zhou JJ, Gasperi G, Malacrida AR (2014b) Sniffing out chemosensory genes from the Mediterranean fruit fly, Ceratitis capitata. PLoS One 9:e85523.  https://doi.org/10.1371/journal.pone.0085523 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Silva-Neto AM, Dias VS, Joachim-Bravo IS (2009) Escolha de parceiro para acasalamento em Ceratitis capitata (Wiedemann) (Diptera: Tephritidae): influência do envelhecimento dos machos no sucesso de cópula. Neotrop Entomol 38:571–577CrossRefPubMedGoogle Scholar
  96. Tillman JA, Seybold SJ, Jurenka RA, Blomquist GJ (1999) Insect pheromones--an overview of biosynthesis and endocrine regulation. Insect Biochem Mol Biol 29:481–514CrossRefPubMedGoogle Scholar
  97. Vanickova L, do Nascimento RR, Hoskovec M, Jezkova Z, Brizova R, Tomcala A, Kalinova B (2012a) Are the wild and laboratory insect populations different in semiochemical emission? The case of the medfly sex pheromone. J Agric Food Chem 60:7168–7176.  https://doi.org/10.1021/jf301474d CrossRefPubMedGoogle Scholar
  98. Vanickova L et al (2012b) Cuticular hydrocarbons of the south American fruit fly Anastrepha fraterculus: variability with sex and age. J Chem Ecol 38:1133–1142.  https://doi.org/10.1007/s10886-012-0177-8 CrossRefPubMedGoogle Scholar
  99. Vanickova L et al (2014) Resolution of three cryptic agricultural pests (Ceratitis fasciventris, C. anonae, C. rosa, Diptera: Tephritidae) using cuticular hydrocarbon profiling. Bull Entomol Res 104:631–638.  https://doi.org/10.1017/S0007485314000406 CrossRefPubMedGoogle Scholar
  100. Wyatt TD (2014) Pheromones and animal behavior: chemical signals and signatures. 2dn edn, CambridgeGoogle Scholar
  101. Yew JY, Chung H (2015) Insect pheromones: an overview of function, form, and discovery. Prog Lipid Res 59:88–105.  https://doi.org/10.1016/j.plipres.2015.06.001 CrossRefPubMedGoogle Scholar
  102. Zhang D, Terschak JA, Harley MA, Lin J, Hardege JD (2011) Simultaneously hermaphroditic shrimp use lipophilic cuticular hydrocarbons as contact sex pheromones. PLoS One 6:e17720.  https://doi.org/10.1371/journal.pone.0017720 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of PaviaPaviaItaly
  2. 2.Centro Grandi StrumentiUniversity of PaviaPaviaItaly
  3. 3.Department of MathematicsUniversity of PaviaPaviaItaly
  4. 4.Department of Biology and BiotechnologyUniversity of PaviaPaviaItaly

Personalised recommendations