Journal of Chemical Ecology

, Volume 44, Issue 3, pp 235–247 | Cite as

Phenotypic Plasticity of Cuticular Hydrocarbon Profiles in Insects

  • Tobias Otte
  • Monika Hilker
  • Sven Geiselhardt


The insect integument is covered by cuticular hydrocarbons (CHCs) which provide protection against environmental stresses, but are also used for communication. Here we review current knowledge on environmental and insect-internal factors which shape phenotypic plasticity of solitary living insects, especially herbivorous ones. We address the dynamics of changes which may occur within minutes, but may also last weeks, depending on the species and conditions. Two different modes of changes are suggested, i.e. stepwise and gradual. A switch between two distinct environments (e.g. host plant switch by phytophagous insects) results in stepwise formation of two distinct adaptive phenotypes, while a gradual environmental change (e.g. temperature gradients) induces a gradual change of numerous adaptive CHC phenotypes. We further discuss the ecological and evolutionary consequences of phenotypic plasticity of insect CHC profiles by addressing the question at which conditions is CHC phenotypic plasticity beneficial. The high plasticity of CHC profiles might be a trade-off for insects using CHCs for communication. We discuss how insects cope with the challenge to produce and “understand” a highly plastic, environmentally dependent CHC pattern that conveys reliable and comprehensible information. Finally, we outline how phenotypic plasticity of CHC profiles may promote speciation in insects that rely on CHCs for mate recognition.


Assortative mating Chemical communication Mate recognition Sensory drive Ecological speciation Self-referent phenotype matching 


  1. Akino T, Knapp JJ, Thomas JA, Elmes GW (1999) Chemical mimicry and host specificity in the butterfly Maculinea rebeli, a social parasite of Myrmica ant colonies. Proc R Soc Lond B 266:1419–1426CrossRefGoogle Scholar
  2. Akino T, Nakamura K, Wakamura S (2004) Diet-induced chemical phytomimesis by twig-like caterpillars of Biston robustum Butler (Lepidoptera: Geometridae). Chemoecology 14:165–174CrossRefGoogle Scholar
  3. Armold MT, Regnier FE (1975) A developmental study of the cuticular hydrocarbons of Sarcophaga bullata. J Insect Physiol 21:1827–1833PubMedCrossRefGoogle Scholar
  4. Armold MT, Blomquist GJ, Jackson LL (1969) Cuticular lipids of insects—III. The surface lipids of the aquatic and terrestrial life forms of the big stonefly, Pteronarcys californica Newport. Comp Biochem Physiol 31:685–692CrossRefGoogle Scholar
  5. Bagnères A-G, Blomquist GJ (2010) Site of synthesis, mechanism of transport and selective deposition of hydrocarbons. In: Blomquist GJ, Bagnères, A-G (eds.). Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology. Cambridge University Press, Cambridge, pp 75–99.Google Scholar
  6. Baker JE, Nelson DR, Fatland C (1979a) Developmental changes in cuticular lipids of the black carpet beetle, Attagenus megatoma. Insect Biochem 9:335–339CrossRefGoogle Scholar
  7. Baker JE, Sukkestad DR, Nelson DR, Fatland C (1979b) Cuticular lipids of larvae and adults of the cigarette beetle, Lasioderma serricorne. Insect Biochem 9:603–611CrossRefGoogle Scholar
  8. Beros S, Foitzik S, Menzel FJ (2017) What are the mechanisms behind a parasite-induced decline in nestmate recognition in ants? J Chem Ecol 43:869–880PubMedCrossRefGoogle Scholar
  9. Bilen J, Atallah J, Azanchi R, Levine JD, Riddiford LM (2013) Regulation of onset of female mating and sex pheromone production by juvenile hormone in Drosophila melanogaster. Proc Natl Acad Sci U S A 110:18321–18326PubMedPubMedCentralCrossRefGoogle Scholar
  10. Blomquist GJ, Bagnères A-G (2010) Introduction: history and overview of insect hydrocarbons. In: Blomquist GJ, Bagnères A-G (eds) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge, pp 3–18CrossRefGoogle Scholar
  11. Blomquist GJ, Jackson LL (1973) Incorporation of labelled dietary n-alkanes into cuticular lipids of the grasshopper Melanoplus sanguinipes. J Insect Physiol 19:1639–1647CrossRefGoogle Scholar
  12. Bontonou G, Denis B, Wicker-Thomas C (2013) Interaction between temperature and male pheromone in sexual isolation in Drosophila melanogaster. J Evol Biol 26:2008–2020PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bontonou G, Shaik HA, Denis B, Wicker-Thomas C (2015) Acp70A regulates Drosophila pheromones through juvenile hormone induction. Insect Biochem Mol Biol 56:36–49PubMedCrossRefGoogle Scholar
  14. Booksmythe I, Rundle HD, Arnqvist G (2017) Sexual dimorphism in epicuticular compounds despite similar sexual selection in sex role-reversed seed beetles. J Evol Biol 30:2005–2016PubMedCrossRefGoogle Scholar
  15. Boughman JW (2002) How sensory drive can promote speciation. Trends Ecol Evol 17:571–577CrossRefGoogle Scholar
  16. Bousquet F, Chauvel I, Flaven-Pouchon J, Farine JP, Ferveur JF (2016) Dietary rescue of altered metabolism gene reveals unexpected Drosophila mating cues. J Lipid Res 57:443–450.Google Scholar
  17. Braga M, Pinto Z, de Carvalho Queiroz MM, Blomquist G (2016) Effect of age on cuticular hydrocarbon profiles in adult Chrysomya putoria (Diptera: Calliphoridae). Forensic Sci Int 259:e37–e47CrossRefGoogle Scholar
  18. Chen N, Bai Y, Fan Y-L, Liu T-X (2017) Solid-phase microextraction-based cuticular hydrocarbon profiling for intraspecific delimitation in Acyrthosiphon pisum. PLoS One 12:e0184243PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chown SL, Sorensen JG, Terblanche JS (2011) Water loss in insects: an environmental change perspective. J Insect Physiol 57:1070–1084PubMedCrossRefGoogle Scholar
  20. Chung H, Carroll SB (2015) Wax, sex and the origin of species: dual roles of insect cuticular hydrocarbons in adaptation and mating. BioEssays 37:822–830PubMedPubMedCentralCrossRefGoogle Scholar
  21. Coyne JA, Orr HA (2004) Speciation. Sinauer, SunderlandGoogle Scholar
  22. Dani FR, Jones GR, Corsi S, Beard R, Pradella D, Turillazzi S (2005) Nestmate recognition cues in the honey bee: differential importance of cuticular alkanes and alkenes. Chem Senses 30:477–489PubMedCrossRefGoogle Scholar
  23. de Renobales M, Blomquist GJ (1983) A developmental study of the composition and biosynthesis of the cuticular hydrocarbons of Trichoplusia ni (Lepidoptera: Noctuidae). Insect Biochem 13:493–502CrossRefGoogle Scholar
  24. Delcourt M, Rundle HD (2011) Condition dependence of a multicomponent sexual display trait in Drosophila serrata. Am Nat 177:812–823PubMedCrossRefGoogle Scholar
  25. Dembeck LM, Böröczky K, Huang W, Schal C, Anholt RR, Mackay TF (2015) Genetic architecture of natural variation in cuticular hydrocarbon composition in Drosophila melanogaster. elife 4:e09861PubMedPubMedCentralCrossRefGoogle Scholar
  26. DeWitt TJ, Sih A, Wilson DS (1998) Costs and limits of phenotypic plasticity. Trends Ecol Evol 13:77–81PubMedCrossRefGoogle Scholar
  27. Dillwith JW, Adams TS, Blomquist GJ (1983) Correlation of housefly sex pheromone production with ovarian development. J Insect Physiol 29:377–386CrossRefGoogle Scholar
  28. Drès M, Mallet J (2002) Host races in plant-feeding insects and their importance in sympatric speciation. Philos T Roy Soc B 357:471–492CrossRefGoogle Scholar
  29. Elmes GW, Akino T, Thomas JA, Clarke RT, Knapp JJ (2002) Interspecific differences in cuticular hydrocarbon profiles of Myrmica ants are sufficiently consistent to explain host specificity by Maculinea (large blue) butterflies. Oecologia 130:525–535PubMedCrossRefGoogle Scholar
  30. Espelie KE, Bernays EA (1989) Diet-related differences in the cuticular lipids of Manduca sexta larvae. J Chem Ecol 15:2003–2017PubMedCrossRefGoogle Scholar
  31. Espelie KE, Chapman RF, Sword GA (1994) Variation in the surface-lipids of the grasshopper, Schistocerca americana (Drury). Biochem Syst Ecol 22:563–575CrossRefGoogle Scholar
  32. Etges WJ, de Oliveira CC (2014) Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. X. Age-specific dynamics of adult epicuticular hydrocarbon expression in response to different host plants. Ecol Evol 4:2033–2045PubMedPubMedCentralGoogle Scholar
  33. Etges WJ, Veenstra CL, Jackson LL (2006) Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. VII. Effects of larval dietary fatty acids on adult epicuticular hydrocarbons. J Chem Ecol 32:2629–2646PubMedCrossRefGoogle Scholar
  34. Everaerts C, Farine J-P, Cobb M, Ferveur J-F (2010) Drosophila cuticular hydrocarbons revisited: mating status alters cuticular profiles. PLoS One 5:e9607PubMedPubMedCentralCrossRefGoogle Scholar
  35. Farine J-P, Ferveur J-F, Everaerts C (2012) Volatile Drosophila cuticular pheromones are affected by social but not sexual experience. PLoS One 7:e40396PubMedPubMedCentralCrossRefGoogle Scholar
  36. Fedina TY, Kuo T-H, Dreisewerd K, Dierick HA, Yew JY, Pletcher SD (2012) Dietary effects on cuticular hydrocarbons and sexual attractiveness in Drosophila. PLoS One 7:e49799PubMedPubMedCentralCrossRefGoogle Scholar
  37. Fedina TY, Arbuthnott D, Rundle HD, Promislow DEL, Pletcher SD (2017) Tissue-specific insulin signaling mediates female sexual attractiveness. PLoS Genet 13:e1006935PubMedPubMedCentralCrossRefGoogle Scholar
  38. Ferveur J (2005) Cuticular hydrocarbons: their evolution and roles in Drosophila pheromonal communication. Behav Genet 35:279–295PubMedCrossRefGoogle Scholar
  39. Fujiwara-Tsujii N, Yasui H, Wakamura S (2013) Population differences in male responses to chemical mating cues in the white-spotted longicorn beetle, Anoplophora malasiaca. Chemoecology 23:113–120CrossRefGoogle Scholar
  40. Geiselhardt SF, Geiselhardt S, Peschke K (2006) Chemical mimicry of cuticular hydrocarbons – how does Eremostibes opacus gain access to breeding burrows of its host Parastizopus armaticeps (Coleoptera, Tenebrionidae)? Chemoecology 16:59–68CrossRefGoogle Scholar
  41. Geiselhardt S, Otte T, Hilker M (2009) The role of cuticular hydrocarbons in male mating behavior of the mustard leaf beetle, Phaedon cochleariae (F.) J Chem Ecol 35:1162–1171PubMedCrossRefGoogle Scholar
  42. Geiselhardt SF, Geiselhardt S, Peschke K (2011) Congruence of epicuticular hydrocarbons and tarsal secretions as a principle in beetles. Chemoecology 21:181–186CrossRefGoogle Scholar
  43. Geiselhardt S, Otte T, Hilker M (2012) Looking for a similar partner: host plants shape mating preferences of herbivorous insects by altering their contact pheromones. Ecol Lett 15:971–977PubMedCrossRefGoogle Scholar
  44. Gemeno C, Laserna N, Riba M, Valls J, Castañé C, Alomar O (2012) Cuticular hydrocarbons discriminate cryptic Macrolophus species (Hemiptera: Miridae). Bull Entomol Res 102:624–631PubMedCrossRefGoogle Scholar
  45. Genin E, Jullien R, Perez F, Fuzeau-Braesch S (1986) Cuticular hydrocarbons of gregarious and solitary locusts Locusta migratoria cinerascens. J Chem Ecol 12:213–1238CrossRefGoogle Scholar
  46. Gershman SN, Rundle HD (2016) Level up: the expression of male sexually selected cuticular hydrocarbons is mediated by sexual experience. Anim Behav 112:69–177CrossRefGoogle Scholar
  47. Gershman SN, Rundle HD (2017) Crowd control: sex ratio affects sexually selected cuticular hydrocarbons in male Drosophila serrata. J Evol Biol 30:583–590PubMedCrossRefGoogle Scholar
  48. Gershman SN, Toumishey E, Rundle HD (2014) Time flies: time of day and social environment affect cuticular hydrocarbon sexual displays in Drosophila serrata. Proc R Soc B 281:20140821PubMedPubMedCentralCrossRefGoogle Scholar
  49. Ghalambor CK, McKay JK, Carroll SP, Reznick DN (2007) Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol 21:394–407CrossRefGoogle Scholar
  50. Gibbs A, Mousseau TA (1994) Thermal acclimation and genetic variation in cuticular lipids of the lesser migratory grasshopper (Melanoplus sanguinipes) - effects of lipid-composition on biophysical properties. Physiol Zool 67:1523–1543CrossRefGoogle Scholar
  51. Gibbs A, Kuenzli M, Blomquist G (1995) Sex-related and age-related changes in the biophysical properties of cuticular lipids of the housefly, Musca domestica. Arch Insect Biochem 29:87–97CrossRefGoogle Scholar
  52. Gibbs AG, Louie AK, Ayala JA (1998) Effects of temperature on cuticular lipids and water balance in a desert Drosophila: is thermal acclimation beneficial? J Exp Biol 201:71–80PubMedGoogle Scholar
  53. Gingrich JB (1975) Ultraviolet-induced changes in cuticular waxes of American cockroaches, Periplaneta americana (L.) (Dictyoptera, Blattaria, Blattidae). Can J Zool 53:1238–1240PubMedCrossRefGoogle Scholar
  54. Hadley NF (1977) Epicuticular lipids of desert tenebrionid beetle, Eleodes armata - seasonal and acclimatory effects on composition. Insect Biochem 7:277–283CrossRefGoogle Scholar
  55. Hajek AE, St. Leger RJ (1994) Interactions between fungal pathogens and insect hosts. Annu Rev Entomol 39:293–322CrossRefGoogle Scholar
  56. Havens JA, Etges WJ (2013) Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. IX. Host plant and population specific epicuticular hydrocarbon expression influences mate choice and sexual selection. J Evol Biol 26:562–576PubMedCrossRefGoogle Scholar
  57. Hebanowska E, Malinski E, Latowska A, Dubis E, Pihlaja K, Oksman P, Nawrot J, Szafranek J (1990) A comparison of cuticular hydrocarbons of larvae and beetles of the Tribolium destructor. Comp Biochem Physiol B 96:815–819CrossRefGoogle Scholar
  58. Heifetz Y, Miloslavski I, Aizenshtat Z, Applebaum SW (1998) Cuticular surface hydrocarbons of desert locust nymphs, Schistocerca gregaria, and their effect on phase behavior. J Chem Ecol 24:1033–1047CrossRefGoogle Scholar
  59. Henneken J, Goodger JQD, Jones TM, Elgar MA (2017) Diet-mediated pheromones and signature mixtures can enforce signal reliability. Front Ecol Evol 4:145CrossRefGoogle Scholar
  60. Howard RW (1998) Ontogenetic, reproductive, and nutritional effects on the cuticular hydrocarbons of the host-specific ectoparasitoid Cephalonomia tarsalis (hymenoptera: Bethylidae). Ann Entomol Soc Am 91:101–112CrossRefGoogle Scholar
  61. Howard RW (2001) Cuticular hydrocarbons of adult Pteromalus cerealellae (hymenoptera: Pteromalidae) and two larval hosts, Angoumois grain moth (Lepidoptera: Gelechiidae) and cowpea weevil (Coleptera: Bruchidae). Ann Entomol Soc Am 94:152–158CrossRefGoogle Scholar
  62. Howard RW, Baker JE (2003) Cuticular hydrocarbons and wax esters of the ectoparasitoid Habrobracon hebetor: ontogenetic, reproductive and nutritional effects. Arch Insect Biochem Physiol 53:1–18PubMedCrossRefGoogle Scholar
  63. Howard RW, Blomquist GJ (2005) Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu Rev Entomol 50:371–393PubMedCrossRefGoogle Scholar
  64. Howard RW, Pérez-Lachaud G (2002) Cuticular hydrocarbons of the ectoparasitic wasp Cephalonomia hyalinipennis (hymenoptera: Bethylidae) and its alternative host, the stored product pest Caulophilus oryzae (Coleoptera: Curculionidae). Arch Insect Biochem Physiol 50:75–84PubMedCrossRefGoogle Scholar
  65. Howard RW, Akre RD, Garnett WB (1990) Chemical mimicry in an obligate predator of carpenter ants (hymenoptera: Formicidae). Ann Entomol Soc Am 83:607–616CrossRefGoogle Scholar
  66. Howard RW, Howard CD, Colquhoun S (1995) Ontogenic and environmentally-induced changes in cuticular hydrocarbons of Oryzaephilus surinamensis (Coleoptera: Cucujidae). Ann Entomol Soc Am 88:485–495CrossRefGoogle Scholar
  67. Ingleby FC (2015) Insect cuticular hydrocarbons as dynamic traits in sexual communication. Insects 6:732–742PubMedPubMedCentralCrossRefGoogle Scholar
  68. Ingleby FC, Hunt J, Hosken DJ (2010) The role of genotype-by-environment interactions in sexual selection. J Evol Biol 23:2031–2045PubMedCrossRefGoogle Scholar
  69. Ingleby FC, Hosken DJ, Flowers K, Hawkes MF, Lane SM, Rapkin J, Dworkin I, Hunt J (2013) Genotype-by-environment interactions for cuticular hydrocarbon expression in Drosophila simulans. J Evol Biol 26:94–107PubMedCrossRefGoogle Scholar
  70. Ingleby FC, Hosken DJ, Flowers K, Hawkes MF, Lane SM, Rapkin J, House CM, Hunt J (2014) Environmental heterogeneity multivariate sexual selection and genetic constraints on cuticular hydrocarbons in Drosophila simulans. J Evol Biol 27:700–713PubMedCrossRefGoogle Scholar
  71. Jackson LL (1983) Cuticular hydrocarbons of the milkweed bug, Oncopeltus fasciatus by age and sex. Insect Biochem 13:19–25CrossRefGoogle Scholar
  72. Jackson LL, Bartelt RJ (1986) Cuticular hydrocarbons of Drosophila virilis: comparison by age and sex. Insect Biochem 16:433–439CrossRefGoogle Scholar
  73. Juárez MP, Brenner RR (1985) The epicuticular lipids of Triatoma infestans—II. Hydrocarbon dynamics. Comp Biochem Physiol 82B:93–803Google Scholar
  74. Jurenka RA, Holland D, Krafsur ES (1998) Hydrocarbon profiles of diapausing and reproductive adult face flies (Musca autumnalis). Arch Insect Biochem Physiol 37:206–214CrossRefGoogle Scholar
  75. Kather R, Martin SJ (2015) Evolution of cuticular hydrocarbons in the hymenoptera: a meta-analysis. J Chem Ecol 41:871–883PubMedPubMedCentralCrossRefGoogle Scholar
  76. Kent C, Azanchi R, Smith B, Chu A, Levine J (2007) A model-based analysis of chemical and temporal patterns of cuticular hydrocarbons in male Drosophila melanogaster. PLoS One 2:e962PubMedPubMedCentralCrossRefGoogle Scholar
  77. Kent C, Azanchi R, Smith B, Formosa A, Levine JD (2008) Social context influences chemical communication in D. melanogaster males. Curr Biol 18:1384–1389PubMedCrossRefGoogle Scholar
  78. Khidr SK, Linforth RST, Hardy ICW (2013) Genetic and environmental influences on the cuticular hydrocarbon profiles of Goniozus wasps. Entomol Exp Appl 147:175–185CrossRefGoogle Scholar
  79. Krupp JJ, Kent C, Billeter JC, Azanchi R, So AKC, Schonfeld JA, Smith BP, Lucas C, Levine JD (2008) Social experience modifies pheromone expression and mating behavior in male Drosophila melanogaster. Curr Biol 18:1373–1383PubMedCrossRefGoogle Scholar
  80. Kühbandner S, Hacker N, Niedermayer S, Steidle JLM, Ruther J (2012) Composition of cuticular lipids in the pteromalid wasp Lariophagus distinguendus is host dependent. Bull Entomol Res 102:610–617PubMedCrossRefGoogle Scholar
  81. Kuo T-H, Yew JY, Fedina TY, Dreisewerd K, Dierick HA, Pletcher SD (2012) Aging modulates cuticular hydrocarbons and sexual attractiveness in Drosophila melanogaster. J Exp Biol 215:814–821PubMedPubMedCentralCrossRefGoogle Scholar
  82. Kwan L, Rundle HD (2010) Adaptation to desiccation fails to generate pre- and postmating isolation in replicate Drosophila melanogaster laboratory populations. Evolution 64:710–723PubMedCrossRefGoogle Scholar
  83. Lebreton S, Mansourian S, Bigarreau J, Dekker T (2016) The adipokinetic hormone receptor modulates sexual behavior, pheromone perception and pheromone production in a sex-specific and starvation-dependent manner in Drosophila melanogaster. Front Ecol Evol 3:151CrossRefGoogle Scholar
  84. Lecuona R, Riba G, Cassier P, Clement JL (1991) Alterations of insect epicuticular hydrocarbons during infection with Beauveria bassiana or B. brongniartii. J Invertebr Pathol 58:10–18CrossRefGoogle Scholar
  85. Leftwich PT, Clarke NVE, Hutchings MI, Chapman T (2017) Gut microbiomes and reproductive isolation in Drosophila. P Natl Acad Sci USA 114:12767–12772CrossRefGoogle Scholar
  86. Leonhardt SD, Menzel F, Nehring V, Schmitt T (2016) Ecology and evolution of communication in social insects. Cell 164:1277–1287PubMedCrossRefGoogle Scholar
  87. Mant J, Brändli C, Vereecken NJ, Schultz CM, Francke W, Schiestl FP (2005) Cuticular hydrocarbons as sex pheromone of the bee Colletes cunicularis and the key to its mimicry by the sexually deceptive orchid, Ophrys exaltata. J Chem Ecol 31:1765–1787PubMedCrossRefGoogle Scholar
  88. Martin S, Drijfhout F (2009) A review of ant cuticular hydrocarbons. J Chem Ecol 35:1151–1161PubMedCrossRefGoogle Scholar
  89. Mas F, Kölliker M (2011) An offspring signal of quality affects the timing of future parental reproduction. Biol Lett 7:352–354PubMedPubMedCentralCrossRefGoogle Scholar
  90. Mas F, Haynes KF, Kölliker M (2009) A chemical signal of offspring quality affects maternal care in a social insect. Proc R Soc B 276:2847–2853PubMedPubMedCentralCrossRefGoogle Scholar
  91. Mateo JM (2010) Self-referent phenotype matching and long-term maintenance of kin recognition. Anim Behav 80:929–935CrossRefGoogle Scholar
  92. Menzel F, Blaimer BB, Schmitt T (2017) How do cuticular hydrocarbons evolve? Physiological constraints and climatic and biotic selection pressures act on a complex functional trait. P Roy Soc B-Biol Sci 284:20161727CrossRefGoogle Scholar
  93. Moczek AP (2010) Phenotypic plasticity and diversity in insects. Philos T Roy Soc B 365:593–603CrossRefGoogle Scholar
  94. Moczek AP, Sultan S, Foster S, Ledon-Rettig C, Dworkin I, Nijhout HF, Abouheif E, Pfennig DW (2011) The role of developmental plasticity in evolutionary innovation. P Roy Soc B 278:2705–2713CrossRefGoogle Scholar
  95. Mody NV, Hedin PA, Neel WW, Miles DH (1975) Hydrocarbons from males, females and larvae of pecan weevil: Curculio caryae (horn). Lipids 10:117–119PubMedCrossRefGoogle Scholar
  96. Moore HE, Butcher JB, Adam CD, Day CD, Drijfhout FP (2016) Age estimation of Calliphora (Diptera: Calliphoridae) larvae using cuticular hydrocarbon analysis and artificial neural networks. Forensic Sci Int 268:81–91PubMedCrossRefGoogle Scholar
  97. Moore HE, Pechal JL, Benbow ME, Drijfhout FP (2017) The potential use of cuticular hydrocarbons and multivariate analysis to age empty puparial cases of Calliphora vicina and Lucilia sericata. Sci Rep 7:1933PubMedPubMedCentralCrossRefGoogle Scholar
  98. Mpuru S, Blomquist GJ, Schal C, Roux M, Kuenzli M, Dusticier G, Clement JL, Bagneres AG (2001) Effect of age and sex on the production of internal and external hydrocarbons and pheromones in the housefly, Musca domestica. Insect Biochem Mol Biol 31:139–155PubMedCrossRefGoogle Scholar
  99. Napolitano R, Juárez MP (1997) Entomopathogenous fungi degrade epicuticular hydrocarbons of Triatoma infestans. Arch Biochem Biophys 344:208–214PubMedCrossRefGoogle Scholar
  100. Nelson DR, Lee RE (2004) Cuticular lipids and desiccation resistance in overwintering larvae of the goldenrod gall fly, Eurosta solidaginis (Diptera: Tephritidae). Comp Biochem Physiol B 138:313–320PubMedCrossRefGoogle Scholar
  101. Nelson DR, Adams TS, Fatland CL (2003) Hydrocarbons in the surface wax of eggs and adults of the Colorado potato beetle, Leptinotarsa decemlineata. Comp Biochem Physiol B 134:447–466PubMedCrossRefGoogle Scholar
  102. Nielsen ML, Holman L (2012) Terminal investment in multiple sexual signals: immune-challenged males produce more attractive pheromones. Funct Ecol 26:20–28CrossRefGoogle Scholar
  103. Noorman N, Den Otter CJ (2002) Effects of relative humidity, temperature, and population density on production of cuticular hydrocarbons in housefly Musca domestica L. J Chem Ecol 28:1819–1829PubMedCrossRefGoogle Scholar
  104. Oi CA, van Zweden JS, Oliveira RC, Van Oystaeyen A, Nascimento FS, Wenseleers T (2015) The origin and evolution of social insect queen pheromones: novel hypotheses and outstanding problems. BioEssays 37:808–821PubMedCrossRefGoogle Scholar
  105. Otte T, Hilker M, Geiselhardt S (2015) The effect of dietary fatty acids on the cuticular hydrocarbon phenotype of an herbivorous insect and consequences for mate recognition. J Chem Ecol 41:32–43PubMedCrossRefGoogle Scholar
  106. Otte T, Hilker M, Geiselhardt S (2016) Phenotypic plasticity of mate recognition systems prevents sexual interference between two sympatric leaf beetle species. Evolution 70:1819–1828PubMedCrossRefGoogle Scholar
  107. Paulmier I, Bagneres AG, Afonso CMM, Dusticier G, Riviere G, Clement JL (1999) Alkenes as a sexual pheromone in the alfalfa leaf-cutter bee Megachile rotundata. J Chem Ecol 25:471–490CrossRefGoogle Scholar
  108. Pennanec'h M, Bricard L, Kunesch G, Jallon JM (1997) Incorporation of fatty acids into cuticular hydrocarbons of male and female Drosophila melanogaster. J Insect Physiol 43:1111–1116PubMedCrossRefGoogle Scholar
  109. Peschke K (1985) Immature males of Aleochara curtula avoid intrasexual aggression by producing the female sex pheromone. Naturwissenschaften 72:274–275PubMedCrossRefGoogle Scholar
  110. Peschke K (1987a) Male aggression, female mimicry and female choice in the rove beetle, Aleochara curtula (Coleoptera, Staphylinidae). Ethology 75:265–284CrossRefGoogle Scholar
  111. Peschke K (1987b) Cuticular hydrocarbons regulate mate recognition, male aggression, and female choice of the rove beetle, Aleochara curtula. J Chem Ecol 13:1993–2008PubMedCrossRefGoogle Scholar
  112. Petfield D, Chenoweth SF, Rundle HD, Blows MW (2005) Genetic variance in female condition predicts indirect genetic variance in male sexual display traits. P Natl Acad Sci USA 102:6045–6050CrossRefGoogle Scholar
  113. Pfennig DW, Wund MA, Snell-Rood EC, Cruickshank T, Schlichting CD, Moczek AP (2010) Phenotypic plasticity's impacts on diversification and speciation. Trends Ecol Evol 25:459–467PubMedCrossRefGoogle Scholar
  114. Pigliucci M, Murren CJ, Schlichting CD (2006) Phenotypic plasticity and evolution by genetic assimilation. J Exp Biol 209:2362–2367PubMedCrossRefGoogle Scholar
  115. Piskorski R, Trematerra P, Dorn S (2010) Cuticular hydrocarbon profiles of codling moth larvae, Cydia pomonella (Lepidoptera: Tortricidae), reflect those of their host plant species. Biol J Linn Soc 101:376–384CrossRefGoogle Scholar
  116. Polerstock AR, Eigenbrode SD, Klowden MJ (2002) Mating alters the cuticular hydrocarbons of female Anopheles gambiae Sensu stricto and Aedes aegypti (Diptera: Culicidae). J Med Entomol 39:545–552PubMedCrossRefGoogle Scholar
  117. Polidori C, Giordani I, Wurdack M, Tormos J, Asís JD, Schmitt T (2017) Post-mating shift towards longer-chain cuticular hydrocarbons drastically reduces female attractiveness to males in a digger wasp. J Insect Physiol 100:119–127PubMedCrossRefGoogle Scholar
  118. Pomonis JG (1989) Cuticular hydrocarbons of the screwworm, Cochliomyia hominivorax (Diptera: Calliphoridae). Isolation, identification, and quantification as a function of age, sex, and irradiation. J Chem Ecol 15:2301–2317PubMedCrossRefGoogle Scholar
  119. Portugal AHA, Trigo JR (2005) Similarity of cuticular lipids between a caterpillar and its host plant: a way to make prey undetectable for predatory ants? J Chem Ecol 31:2551–2261PubMedCrossRefGoogle Scholar
  120. Rajpurohit S, Hanus R, Vrkoslav V, Behrman EL, Bergland AO, Petrov D, Cvačka J, Schmidt PS (2017) Adaptive dynamics of cuticular hydrocarbons in Drosophila. J Evol Biol 30:66–80PubMedCrossRefGoogle Scholar
  121. Reylea RA (2002) Costs of phenotypic plasticity. Am Nat 159:272–282CrossRefGoogle Scholar
  122. Rouault JD, Marican C, Wicker-Thomas C, Jallon JM (2004) Relations between cuticular hydrocarbon (HC) polymorphism, resistance against desiccation and breeding temperature; a model for HC evolution in D. melanogaster and D. simulans. Genetica 120:195–212PubMedCrossRefGoogle Scholar
  123. Roux O, Gers C, Legal L (2008) Ontogenetic study of three Calliphoridae of forensic importance through cuticular hydrocarbon analysis. Med Vet Entomol 22:309–317PubMedCrossRefGoogle Scholar
  124. Rundle HD, Chenoweth SF, Doughty P, Blows MW (2005) Divergent selection and the evolution of signal traits and mating preferences. PLoS Biol 3:1988–1995CrossRefGoogle Scholar
  125. Ruther J, Döring M, Steiner S (2011) Cuticular hydrocarbons as contact sex pheromone in the parasitoid Dibrachys cavus. Entomol Exp Appl 140:59–68CrossRefGoogle Scholar
  126. Salamin N, Wuest RO, Lavergne S, Thuiller W, Pearman PB (2010) Assessing rapid evolution in a changing environment. Trends Ecol Evol 25:692–698PubMedCrossRefGoogle Scholar
  127. Sappington TW, Taylor OR (1990) Developmental and environmental sources of pheromone variation in Colias eurytheme butterflies. J Chem Ecol 16:2771–2786PubMedCrossRefGoogle Scholar
  128. Savarit F, Ferveur J-F (2002) Temperature affects the ontogeny of sexually dimorphic cuticular hydrocarbons in Drosophila melanogaster. J Exp Biol 205:3241–3249PubMedGoogle Scholar
  129. Schal C, Gu X, Burns EL, Blomquist GJ (1994) Patterns of biosynthesis and accumulation of hydrocarbons and contact sex pheromone in the female German cockroach, Blattella germanica. Arch Insect Biochem Physiol 25:375–391PubMedCrossRefGoogle Scholar
  130. Schal C, Sevala VL, Young HP, Bachmann JAS (1998) Sites of synthesis and transport pathways of insect hydrocarbons: cuticle and ovary as target tissues. Am Zool 38:382–393CrossRefGoogle Scholar
  131. Schlichting CD, Pigliucci M (1998) Phenotypic evolution: a reaction norm perspective. Sinauer Associates, SunderlandGoogle Scholar
  132. Schönrogge K, Wardlaw JC, Peters AJ, Everett S, Thomas A, Elmes GW (2004) Changes in chemical signature and host specificity from larval retrieval to full social integration in the myrmecophilous butterfly Maculinea rebeli. J Chem Ecol 30:91–107PubMedCrossRefGoogle Scholar
  133. Scott MP, Madjid K, Orians CM (2008) Breeding alters cuticular hydrocarbons and mediates partner recognition by burying beetles. Anim Behav 76:507–513CrossRefGoogle Scholar
  134. Sharon G, Segal D, Ringo JM, Hefetz A, Zilber-Rosenberg I, Rosenberg E (2010) Commensal bacteria play a role in mating preference of Drosophila melanogaster. P Natl Acad Sci USA 107:20051–20056CrossRefGoogle Scholar
  135. Simmons LW, Alcock J, Reeder A (2003) The role of cuticular hydrocarbons in male attraction and repulsion by female Dawson's burrowing bee, Amegilla dawsoni. Anim Behav 66:677–685CrossRefGoogle Scholar
  136. Smadja C, Butlin RK (2009) On the scent of speciation: the chemosensory system and its role in premating isolation. Heredity 102:77–97PubMedCrossRefGoogle Scholar
  137. Smith AA, Liebig J (2017) The evolution of cuticular fertility signals in eusocial insects. Curr Opin Insect Sci 22:79–84PubMedCrossRefGoogle Scholar
  138. Snell-Rood EC (2012) Selective processes in development: implications for the costs and benefits of phenotypic plasticity. Integr Comp Biol 52:31–42PubMedCrossRefGoogle Scholar
  139. Snell-Rood EC, Van Dyken JD, Cruickshank T, Wade MJ, Moczek AP (2010) Toward a population genetic framework of developmental evolution: the costs, limits, and consequences of phenotypic plasticity. BioEssays 32:71–81PubMedPubMedCentralCrossRefGoogle Scholar
  140. Steiger S, Peschke K, Francke W, Muller J (2007) The smell of parents: breeding status influences cuticular hydrocarbon pattern in the burying beetle Nicrophorus vespilloides. P Roy Soc B-Biol Sci 274:2211–2220CrossRefGoogle Scholar
  141. Steiger S, Peschke K, Muller JK (2008) Correlated changes in breeding status and polyunsaturated cuticular hydrocarbons: the chemical basis of nestmate recognition in the burying beetle Nicrophorus vespilloides? Behav Ecol Sociobiol 62:1053–1060CrossRefGoogle Scholar
  142. Steiner S, Steidle JLM, Ruther J (2005) Female sex pheromone in immature insect males: a case of pre-emergence chemical mimicry? Behav Ecol Sociobiol 58:111–120CrossRefGoogle Scholar
  143. Steiner S, Mumm R, Ruther J (2007) Courtship pheromones in parasitic wasps: comparison of bioactive and inactive hydrocarbon profiles by multivariate statistical methods. J Chem Ecol 33:825–838PubMedCrossRefGoogle Scholar
  144. Stennett MD, Etges WJ (1997) Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. III. Epicuticular hydrocarbon variation is determined by use of different host plants in Drosophila mojavensis and Drosophila arizonae. J Chem Ecol 23:2803–2824CrossRefGoogle Scholar
  145. Stinziano JR, Sové RJ, Rundle HD, Sinclair BJ (2015) Rapid desiccation hardening changes the cuticular hydrocarbon profile of Drosophila melanogaster. Comp Biochem Physiol A 180:38–42CrossRefGoogle Scholar
  146. Thomas ML, Simmons LW (2009) Male dominance influences pheromone expression, ejaculate quality, and fertilization success in the Australian field cricket, Teleogryllus oceanicus. Behav Ecol 20:1118–1124CrossRefGoogle Scholar
  147. Thomas ML, Simmons LW (2011) Short-term phenotypic plasticity in long-chain cuticular hydrocarbons. P Roy Soc B-Biol Sci 278:3123–3128CrossRefGoogle Scholar
  148. Thomas ML, Gray B, Simmons LW (2011) Male crickets alter the relative expression of cuticular hydrocarbons when exposed to different acoustic environments. Anim Behav 82:49–53CrossRefGoogle Scholar
  149. Thomas JA, Elmes GW, Sielezniew M, Stankiewicz-Fiedurek A, Simcox DJ, Settele J, Schönrogge K (2013) Mimetic host shifts in an endangered social parasite of ants. Proc R Soc B 280:20122336PubMedPubMedCentralCrossRefGoogle Scholar
  150. Toolson EC (1982) Effects of rearing temperature on cuticle permeability and epicuticular lipid composition in Drosophila pseudoobscura. J Exp Zool 222:249–253CrossRefGoogle Scholar
  151. Toolson EC, Kuper-Simbron R (1989) Laboratory evolution of epicuticular hydrocarbon composition and cuticular permeability in Drosophila pseudoobscura: effects on sexual dimorphism and thermal-acclimation ability. Evolution 43:468–473PubMedGoogle Scholar
  152. Toolson EC, Markow TA, Jackson LL, Howard RW (1990) Epicuticular hydrocarbon composition of wild and laboratory-reared Drosophila mojavensis Patterson and crow (Diptera: Drosophilidae). Ann Entomol Soc Am 83:1165–1176CrossRefGoogle Scholar
  153. Trabalon M, Campan M, Clémenl J-L, Thon B, Lange C, Lefevre J (1988) Changes in cuticular hydrocarbon composition in relation to age and sexual behavior in the female Calliphora vomitoria (Diptera). Behav Process 17:107–115CrossRefGoogle Scholar
  154. Tregenza T, Buckley S, Pritchard V, Butlin R (2000) Inter- and intrapopulation effects of sex and age on epicuticular composition of meadow grasshopper, Chorthippus parallelus. J Chem Ecol 26:257–278CrossRefGoogle Scholar
  155. Via S, Gomulkiewicz R, Dejong G, Scheiner SM, Schlichting CD, Vantienderen PH (1995) Adaptive phenotypic plasticity - consensus and controversy. Trends Ecol Evol 10:212–217Google Scholar
  156. Wang Y, Yu Z, Zhang J, Moussian B (2016) Regionalization of surface lipids in insects. P Roy Soc B-Biol Sci 283:20152994CrossRefGoogle Scholar
  157. Ward HKE (2017) The genetic and environmental basis for CHC biosynthesis in Drosophila. Electronic Thesis and Dissertation Repository 4900
  158. Weddle CB, Mitchell C, Bay SK, Sakaluk SK, Hunt J (2012) Sex-specific genotype-by-environment interactions for cuticular hydrocarbon expression in decorated crickets Gryllodes sigillatus: implications for the evolution of signal reliability. J Evol Biol 25:2112−2125CrossRefGoogle Scholar
  159. Weddle CB, Steiger S, Hamaker CG, Ower GD, Mitchell C, Sakaluk SK, Hunt J (2013) Cuticular hydrocarbons as a basis for chemosensory self-referencing in crickets: a potentially universal mechanism facilitating polyandry in insects. Ecol Lett 16:346–353PubMedCrossRefGoogle Scholar
  160. Weiss I, Rössler T, Hofferberth J, Brummer M, Ruther J, Stökl J (2013) A nonspecific defensive compound evolves into a competition-avoidance cue and a female sex-pheromone. Nat Commun 4:2767PubMedPubMedCentralCrossRefGoogle Scholar
  161. West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, OxfordGoogle Scholar
  162. Wicker C, Jallon J-M (1995a) Hormonal control of sex pheromone biosynthesis in Drosophila melanogaster. J Insect Physiol 41:65–70CrossRefGoogle Scholar
  163. Wicker C, Jallon J-M (1995b) Influence of ovary and ecdysteroids on pheromone biosynthesis in Drosophila melanogaster (Diptera: Drosophilidae). Eur J Entomol 92:197–202Google Scholar
  164. Wong JW, Lucas C, Kölliker M (2014a) Cues of maternal condition influence offspring selfishness. PLoS One 9:e87214PubMedPubMedCentralCrossRefGoogle Scholar
  165. Wong JW, Meunier J, Lucas C, Kolliker M (2014b) Paternal signature in kin recognition cues of a social insect: concealed in juveniles, revealed in adults. P Roy Soc B 281:20141236CrossRefGoogle Scholar
  166. Wund MA (2012) Assessing the impacts of phenotypic plasticity on evolution. Integr Comp Biol 52:5–15PubMedCrossRefGoogle Scholar
  167. Xue H-J, Wei J-N, Magalhães S, Zhang B, Song K-Q, Liu J, Li W-Z, Yang X-K (2016) Contact pheromones of 2 sympatric beetles are modified by the host plant and affect mate choice. Behav Ecol 27:895–902CrossRefGoogle Scholar
  168. Yocum GD, Buckner JS, Fatland CL (2011) A comparison of internal and external lipids of nondiapausing and diapause initiation phase adult Colorado potato beetles, Leptinotarsa decemlineata. Comp Biochem Physiol B 159:163–170PubMedCrossRefGoogle Scholar
  169. Yoon C, Yang J-O, Youn Y-N, Kim G-H (2012) Changes in cuticular hydrocarbons in different developmental stages of the bean bug, Riptortus pedestris (Hemiptera: Alydidae). J Asia Pac Entomol 15:579–587CrossRefGoogle Scholar
  170. Zhu GH, Ye GY, Hu C, Xu XH, Li K (2006) Development changes of cuticular hydrocarbons in Chrysomya rufifacies larvae: potential for determining larval age. Med Vet Entomol 20:438–444PubMedCrossRefGoogle Scholar
  171. Zurek L, Weston DW, Krasnoff SB, Schal C (2002) Effect of the entomopathogenic fungus, Entomophthora muscae (Zygomycetes: Entomophthoraceae), on sex pheromone and cuticular hydrocarbons of the house fly, Musca domestica. J Invertebr Pathol 80:171–176PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of BiologyFreie Universität BerlinBerlinGermany

Personalised recommendations