Advertisement

Journal of Chemical Ecology

, Volume 44, Issue 1, pp 72–94 | Cite as

A Review of “Polychaeta” Chemicals and their Possible Ecological Role

  • Marina Cyrino Leal Coutinho
  • Valéria Laneuville Teixeira
  • Cinthya Simone Gomes Santos
Review Article

Abstract

Despite the many publications concerning the isolation of substances and the many reviews of marine natural products, some groups of organisms remain poorly studied, including “Polychaeta”. In response, this review covers articles published through December 2016 that address marine natural products produced from polychaetes, with a focus on antipredatory strategies, competitors, fouling, and pathogens. A total of 121 compounds were isolated from 1934 to 2016, which includes halogenated aromatics, proteins, amino acids and Lumazine derivatives most notably—with a defensive function were found in the literature, most frequently in the families Sabellidae, Terebellidae, Glyceridae, and Nereididae. The period of highest discovery of natural products in defensive actions for the group was the 2000s. Polychaetes were addressed in 26 revisions of the total 51 articles analyzed and are less reported than other marine invertebrates such as sponges, cnidarians, mollusks, and tunicates. In sum, the present review provides a basis for future research on the marine chemical ecology of polychaetes.

Keywords

Marine chemical ecology Antipredatory strategies Competition Halogenated aromatics Annelid Bristle worms 

Notes

Acknowledgments

The authors gratefully acknowledge the financial support from CNPq (Conselho Nacional de Pesquisa e Desenvolvimento), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and FAPERJ (Fundação Carlos Chagas Filho de Amparo à Pesquisa ao Estado do Rio de Janeiro). Without it, this study would not have been possible. We are thankful to Diana Cavalcanti and Ana Claudia dos Santos Brasil whose comments helped to improve an earlier version of this manuscript. Two anonymous reviewers also contributed to improve the final version.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. Agatsuma Y, Endo H, Taniguchi K (2008) Inhibitory effect of 2,4-dibromophenol and 2,4,6-tribromophenol on larval survival and metamorphosis of the sea urchin Strongylocentrotus nudus. Fish Sci 74:837–841CrossRefGoogle Scholar
  2. Amsler CD, Iken K, McClintock JB, Amsler MO, Peters KJ, Hubbard JM, Furrow FB, Baker BJ (2005) Comprehensive evaluation of the palatability and chemical defenses of subtidal macroalgae from the Antarctic Peninsula. Mar Ecol Prog Ser 294:141–159CrossRefGoogle Scholar
  3. Anctil M (1979) The epithelial luminescent system of Chaetopterus variopedatus. Can J Zool 57:1290–1310CrossRefGoogle Scholar
  4. Anctil M (1981) Luminescence control in isolated notopods of the tube-worm Chaetopterus variopedatus: effects of cholinergic and GABAergic drugs. Comp Biochem Physiol C 68:187–194CrossRefGoogle Scholar
  5. Andersen RJ, Wolfe MS, Faulkner DJ (1974) Autotoxic antibiotic production by a marine Chromobacterium. Mar Biol 27:281–285CrossRefGoogle Scholar
  6. Anderson RS, Chain BM (1982) Antibacterial activity in the coelomic fluid of a marine annelid, Glycera dibranchiata. J Invertebr Pathol 40:320–326CrossRefGoogle Scholar
  7. Assmann M, Lichte E, Köck M (2004) Multiple defensive roles for bromopyrrole alkaloids from Caribbean Agelas sponges. Boll Mus Ist Biol Univ Genova 68:187–193Google Scholar
  8. Asworth RB, Cormier MJ (1967) Isolation of 2,6-dibromophenol from the marine hemichordate, Balanoglossus biminiensis. Science 155:1558–1559CrossRefGoogle Scholar
  9. Bandaranayake WM (2006) The nature and role of pigments of marine invertebrates. Nat Prod Rep 23:223–255.  https://doi.org/10.1039/b307612c PubMedCrossRefGoogle Scholar
  10. Barsby T, Kicklighter CE, Hay ME, Sullards MC, Kubanek J (2003) Defensive 2-alkylpyrrole sulfamates from the marine annelid Cirriformia tentaculata. J Nat Prod 66:1110–1112.  https://doi.org/10.1021/np030149z PubMedCrossRefGoogle Scholar
  11. Bassot JM (1987) A transient intracellular coupling explains the facilitation of responses in the bioluminescent system of scale worms. J Cell Biol 105:2235–2243PubMedCrossRefGoogle Scholar
  12. Bassot JM, Nicolas MT (1995) Bioluminescence in scale-worm photosomes: the photoprotein polynoidin is specific for the detection of superoxide radicals. Histochem Cell Biol 104:199–210PubMedCrossRefGoogle Scholar
  13. Becerro MA, López NI, Turón X, Uriz J (1994) Antimicrobial activity and surface bacterial film in marine sponges. J Exp Mar Biol Ecol 179:195–205CrossRefGoogle Scholar
  14. Benkendorff K, Davis AR, Bremner JB (2001) Chemical defense in the egg masses of benthic invertebrates: an assessment of antibacterial activity in 39 mollusks and 4 polychaetes. J Invertebr Pathol 78:109–118.  https://doi.org/10.1006/jipa.2001.5047 PubMedCrossRefGoogle Scholar
  15. Bhosale SH, Jagtap TG, Naik CG (1999) Antifungal activity of some marine organisms from India, against food spoilage Aspergillus strains. Mycopathologia 147:133–138PubMedCrossRefGoogle Scholar
  16. Bianco EM, Rogers R, Teixeira VL, Pereira RC (2009) Antifoulant diterpenes produced by the brown seaweed Canistrocarpus cervicornis. J Appl Phycol 21(3):341–346.  https://doi.org/10.1007/s10811-008-9374-9 CrossRefGoogle Scholar
  17. Bleidorn C, Vogt L, Bartolomaeus T (2003) New insights into polychaete phylogeny (Annelida) inferred from 18S rDNA sequences. Mol Phylogenet Evol 29:279–288PubMedCrossRefGoogle Scholar
  18. Blunden G (1988) Metabolites from marine algae. Prog Oceanogr 21:217–226CrossRefGoogle Scholar
  19. Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2003) Marine natural products. Nat Prod Rep 20:1–48.  https://doi.org/10.1039/b207130b PubMedCrossRefGoogle Scholar
  20. Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2004) Marine natural products. Nat Prod Rep 21:1–49.  https://doi.org/10.1039/b305250h PubMedCrossRefGoogle Scholar
  21. Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2005) Marine natural products. Nat Prod Rep 22:15–61.  https://doi.org/10.1039/b415080p PubMedCrossRefGoogle Scholar
  22. Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2006) Marine natural products. Nat Prod Rep 23:26–78.  https://doi.org/10.1039/b502792f PubMedCrossRefGoogle Scholar
  23. Blunt JW, Copp BR, Hu WP, Munro MHG, Northcote PT, Prinsep MR (2007) Marine natural products. Nat Prod Rep 24:31–86.  https://doi.org/10.1039/b603047p PubMedCrossRefGoogle Scholar
  24. Blunt JW, Copp BR, Hu WP, Munro MHG, Northcote PT, Prinsep MR (2008) Marine natural products. Nat Prod Rep 25:35–94.  https://doi.org/10.1039/b701534h PubMedCrossRefGoogle Scholar
  25. Blunt JW, Copp BR, Hu WP, Munro MHG, Northcote PT, Prinsep MR (2009) Marine natural products. Nat Prod Rep 26:170–244.  https://doi.org/10.1039/b805113p PubMedCrossRefGoogle Scholar
  26. Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2010) Marine natural products. Nat Prod Rep 27:165–237.  https://doi.org/10.1039/b906091j PubMedCrossRefGoogle Scholar
  27. Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2011) Marine natural products. Nat Prod Rep 28:196–268.  https://doi.org/10.1039/c005001f PubMedCrossRefGoogle Scholar
  28. Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2012) Marine natural products. Nat Prod Rep 29:144–222.  https://doi.org/10.1039/c2np00090c PubMedCrossRefGoogle Scholar
  29. Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2013) Marine natural products. Nat Prod Rep 30:237–323.  https://doi.org/10.1039/c2np20112g PubMedCrossRefGoogle Scholar
  30. Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2014) Marine natural products. Nat Prod Rep 31:160–258.  https://doi.org/10.1039/c3np70117d PubMedCrossRefGoogle Scholar
  31. Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2015) Marine natural products. Nat Prod Rep 32:116–211.  https://doi.org/10.1039/c4np00144c PubMedCrossRefGoogle Scholar
  32. Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2016) Marine natural products. Nat Prod Rep 33:382–431.  https://doi.org/10.1039/c5np00156k PubMedCrossRefGoogle Scholar
  33. Bolser RC, Hay ME (1996) Are tropical plants better defended? Palatability and defenses of temperate vs. tropical seaweeds. Ecology 77(8):2269–2286CrossRefGoogle Scholar
  34. Boman HG (1995) Peptide antibiotics and their role in innate immunity. Annu Rev Immunol 13:61–92PubMedCrossRefGoogle Scholar
  35. Bon C, Saliou B, Thieffry M, Manaranch R (1985) Partial purification of α-Glycerotoxin, a presynaptic neurotoxin from the venom glands of the polychaete annelid Glycera convoluta. Neurochem Int 7(1):63–75PubMedCrossRefGoogle Scholar
  36. Branchini BR, Behney CE, Southworth TL, Rawat R, Deheyn DD (2014) Chemical analysis of the luminous slime secreted by the marine worm Chaetopterus (Annelida, Polychaeta). Photochem Photobiol 90:247–251.  https://doi.org/10.1111/php.12169 PubMedCrossRefGoogle Scholar
  37. Bryan PJ, Rittschof D, McClintock JB (1996) Bioactivity of echinoderm ethanolic body-wall extracts: an assessment of marine bacterial attachment and macroinvertebrate larval settlement. J Exp Mar Biol Ecol 196:79–96CrossRefGoogle Scholar
  38. Bryan PJ, McClintock JB, Hopkins TS (1997) Structural and chemical defenses of echinoderms from the northern Gulf of Mexico. J Exp Mar Biol Ecol 210:173–186CrossRefGoogle Scholar
  39. Burns E, Ifrach I, Carmeli S, Pawlik JR, Ilan M (2003) Comparison of anti-predatory defenses of Red Sea and Caribbean sponges. I. Chemical defense. Mar Ecol Prog Ser 252:105–114CrossRefGoogle Scholar
  40. Canicattì C, Ville P, Pagliara P, Roch P (1992) Hemolysins from the mucus of Spirographis spalllanzanii (Polychaeta: Sabellidae). Mar Biol 114:453–458CrossRefGoogle Scholar
  41. Casillas E, Myers MS (1989) Effect of bromobenzene and O-bromophenol on kidney and liver of english sole (Parophrys velutus). Camp. Biochem Physiol 93C(1):4348–1989Google Scholar
  42. Chain BM, Anderson RS (1983a) Antibacterial activity of the coelomic fluid from the polychaete, Glycera dibranchiata. II. Partial purification and biochemical characterization of the active factor. Biol Bull 164:41–49CrossRefGoogle Scholar
  43. Chain BM, Anderson RS (1983b) A bactericidal and cytotoxic factor in the coelomic fluid of the polychaete, Glycera dibranchiata. Dev Comp Immunol 7:625–628CrossRefGoogle Scholar
  44. Chen YP, Lincoln DE, Woodin SA, Lovell CR (1991) Purification and properties of a unique flavin-containing chloroperoxidase from the capitellid polychaete Notomastus lobatus. J Biol Chem 266(35):23909–23915PubMedGoogle Scholar
  45. Chen YP, Woodin SA, Lincoln DE, Lovell CR (1996) An unusual dehalogenating peroxidase from the marine terebellid polychaete Amphitrite ornata. J Biol Chem 271(9):4609–4612.  https://doi.org/10.1074/jbc.271.9.4609 PubMedCrossRefGoogle Scholar
  46. Chung HY, Ma WCJ, Ang PO Jr, Kim JS, Chen F (2003) Seasonal variations of bromophenols in brown algae (Padina arborescens, Sargassum siliquastrum, and Lobophora variegata) collected in Hong Kong. J Agric Food Chem 51:2619–2624PubMedCrossRefGoogle Scholar
  47. Clavico EEG, Da Gama BAP, Soares AR, Cassiano KM, Pereira RC (2013) Interaction of chemical and structural components providing defences to sea pansies Renilla reniformis and Renilla muelleri. Mar Biol Res 9(3):285–292.  https://doi.org/10.1080/17451000.2012.739693 CrossRefGoogle Scholar
  48. Connaughton VP, Schuur A, Targett NM, Epifanio CE (1994) Chemical suppression of feeding in larval weakfish (Cynoscion regalis) by trochophores of the serpulid polychaete Hydroides dianthus. J Chem Ecol 20(7):1763–1771PubMedCrossRefGoogle Scholar
  49. Cowart JD, Fielman KT, Woodin SA, Lincoln DE (2000) Halogenated metabolites in two polychaetes and their planktotrophic and lecithotrophic larvae. Mar Biol 136:993–1002CrossRefGoogle Scholar
  50. Cronin G (2001) Resource allocation in seaweeds and marine invertebrates: chemical defense patterns in relation to defense theories. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC Press, Boca Raton, pp. 325–353Google Scholar
  51. Czeczuga B (1971) The coloration of specimens of Nereis zonata Mal. (Annelides, Polychaeta) from the Black Sea. Hydrobiologia 37(2):301–307CrossRefGoogle Scholar
  52. Dales RP (1962) The nature of the pigments in the crowns of sabellid and serpulid polychaetes. J Mar Biol Assoc UK 42:259–274CrossRefGoogle Scholar
  53. Dales RP (1971) Bioluminescence in pelagic polychaetes. J Fish Res Board Can 28(10):1487–1489Google Scholar
  54. Dales RP, Kennedy GY (1954) On the diverse colours of Nereis diversicolor. J Mar Biol Assoc UK 33:699–708CrossRefGoogle Scholar
  55. Davis JM, Viney C (1998) Water-mucin phases: conditions for mucus liquid crystallinity. Thermochim Acta 315:39–49CrossRefGoogle Scholar
  56. De Nys R, Steinberg PD, Willemsen P, Dworjanyn SA, Gabelish CL, King RJ (1995) Broad spectrum effects of secondary metabolites from the red alga Delisea pulchra in antifouling assays. Biofouling 8:259–271CrossRefGoogle Scholar
  57. Deheyn DD, Latz MI (2009) Internal and secreted bioluminescence of the marine polychaete Odontosyllis phosphorea (Syllidae). Invertebr Biol 128(1):31–45.  https://doi.org/10.1111/j.1744-7410.2008.00149.x CrossRefGoogle Scholar
  58. Deheyn DD, Enzor LA, Dubowitz A, Urbach JS, Blair D (2013) Optical and physicochemical characterization of the luminous mucous secreted by the marine worm Chaetopterus sp. Physiol Biochem Zool 86(6):702–715.  https://doi.org/10.1086/673869 PubMedCrossRefGoogle Scholar
  59. Dimarcq JL, Bulet P, Hetru C, Hoffmann J (1998) Cysteine-rich antimicrobial peptides in invertebrates. Biopolymers 47:465–477PubMedCrossRefGoogle Scholar
  60. Dworjanyn AS, De Nys R, Steinberg PD (1999) Localisation and surface quantification of secondary metabolites in the red alga Delisea pulchra. Mar Biol 133:727–736CrossRefGoogle Scholar
  61. Dworjanyn AS, De Nys R, Steinberg PD (2006) Chemically mediated antifouling in the red alga Delisea pulchra. Mar Ecol Prog Ser 318:153–163CrossRefGoogle Scholar
  62. Eklöf J (2010) Taxonomy and phylogeny of polychaetes. Dissertation, University of GothenburgGoogle Scholar
  63. Elayaraja S, Murugesan P, Vijayalakshmi S, Balasubramanian T (2010) Antibacterial and antifungal activities of polychaete Perinereis cultrifera. Indian J Geo-Mar Sci 39(2):257–261Google Scholar
  64. Emrich R, Weyland H, Weber K (1990) 2,3,4-Tribromopyrrole from the marine polychaete Polyphysia crassa. J Nat Prod 53(3):703–705CrossRefGoogle Scholar
  65. Engel S, Pawlik JR (2000) Allelopathic activities of sponge extracts. Mar Ecol Prog Ser 207:273–281CrossRefGoogle Scholar
  66. Epifanio RA, Maia LF, Fenical W (2000) Chemical defenses of the endemic Brazilian gorgonian Lophogorgia violacea Pallas (Octocorallia, Gorgonacea). J Braz Chem Soc 11(6):584–591CrossRefGoogle Scholar
  67. Epifanio RA, Maia LF, Pawlik JR, Fenical W (2007) Antipredatory secosterols from the octocoral Pseudopterogorgia americana. Mar Ecol Prog Ser 329:307–310CrossRefGoogle Scholar
  68. Esser F, Winterberg M, Sebesvari Z, Harder T (2008) Effects of halogenated metabolites from infaunal polychaetes on larval settlement of the spionid polychaete Streblospio benedicti. Mar Ecol Prog Ser 355:161–172.  https://doi.org/10.3354/meps07226 CrossRefGoogle Scholar
  69. Fan X, NJ X, Shi JG (2003) Bromophenols from the red alga Rhodomela confervoides. J Nat Prod 66:455–458PubMedCrossRefGoogle Scholar
  70. Fattorini D, Regoli F (2004) Arsenic speciation in tissues of the Mediterranean polychaete Sabella spallanzanii. Environ Toxicol Chem 23:1881–1887PubMedCrossRefGoogle Scholar
  71. Fattorini D, Notti A, Halt MN, Gambi MC, Regoli F (2005) Levels and chemical speciation of arsenic in polychaetes: A review. Mar Ecol 26:255–264.  https://doi.org/10.1111/j.1439-0485.2005.00057.x CrossRefGoogle Scholar
  72. Fattorini D, Notti A, Nigro M, Regoli F (2010) Hyperaccumulation of vanadium in the Antarctic polychaete Perkinsiana littoralis as a natural chemical defense against predation. Environ Sci Pollut Res 17:220–228.  https://doi.org/10.1007/s11356-009-0243-0 CrossRefGoogle Scholar
  73. Fauchald K (1977) The polychaete worms – definitions and keys to the orders, families and genera. Natural History Museum of Los Angeles County, Los AngelesGoogle Scholar
  74. Faulkner D J (1977) Interesting aspects of marine natural products chemistry. Tetrahedron 33(12):1421–1443Google Scholar
  75. Faulkner DJ (1984) Marine natural products: Metabolites of marine invertebrates. Nat Prod Rep 1:551–598CrossRefGoogle Scholar
  76. Faulkner DJ (1986) Marine natural products. Nat Prod Rep 3:1–33PubMedCrossRefGoogle Scholar
  77. Faulkner DJ (1987) Marine natural products. Nat Prod Rep 4:539–576PubMedCrossRefGoogle Scholar
  78. Faulkner DJ (1988) Marine natural products. Nat Prod Rep 5:613–663PubMedCrossRefGoogle Scholar
  79. Faulkner DJ (1990) Marine natural products. Nat Prod Rep 7:269–309PubMedCrossRefGoogle Scholar
  80. Faulkner DJ (1991) Marine natural products. Nat Prod Rep 8:97–147PubMedCrossRefGoogle Scholar
  81. Faulkner DJ (1992) Marine natural products. Nat Prod Rep 9:323–364CrossRefGoogle Scholar
  82. Faulkner DJ (1993) Marine natural products. Nat Prod Rep 10:497–539PubMedCrossRefGoogle Scholar
  83. Faulkner DJ (1994) Marine natural products. Nat Prod Rep 1:355–394CrossRefGoogle Scholar
  84. Faulkner DJ (1995) Marine natural products. Nat Prod Rep 12:223–269CrossRefGoogle Scholar
  85. Faulkner DJ (1996) Marine natural products. Nat Prod Rep 13:75–125PubMedCrossRefGoogle Scholar
  86. Faulkner DJ (1997) Marine natural products. Nat Prod Rep 14:259–302CrossRefGoogle Scholar
  87. Faulkner DJ (1998) Marine natural products. Nat Prod Rep 15:113–158PubMedCrossRefGoogle Scholar
  88. Faulkner DJ (1999) Marine natural products. Nat Prod Rep 16:155–198CrossRefGoogle Scholar
  89. Faulkner DJ (2000a) Marine natural products. Nat Prod Rep 17:7–55PubMedCrossRefGoogle Scholar
  90. Faulkner DJ (2000b) Marine Pharmacology. Antonie Van Leeuwenhoek 77:135–145PubMedCrossRefGoogle Scholar
  91. Faulkner DJ (2000c) Highlights of marine natural products chemistry (1972-1999). Nat Prod Rep 17:1–6Google Scholar
  92. Faulkner DJ (2001) Marine natural products. Nat Prod Rep 18:1–49PubMedCrossRefGoogle Scholar
  93. Faulkner DJ (2002) Marine natural products. Nat Prod Rep 19:1–48PubMedGoogle Scholar
  94. Fielman KT, Targett NM (1995) Variation of 2,3,4-tribromopyrrole and its sodium sulfamate salt in the hemichordate Saccoglossus kowalevskii. Mar Ecol Prog Ser 116:125–136CrossRefGoogle Scholar
  95. Fielman KT, Woodin SA, Walla MD, Lincoln DE (1999) Widespread occurrence of natural halogenated organics among temperate marine infauna. Mar Ecol Prog Ser 181:1–12CrossRefGoogle Scholar
  96. Fielman KT, Woodin SA, Lincoln DE (2001) Polychaete indicator species as a source of natural halogenated organic compounds in marine sediments. Environ Toxicol Chem 20(4):738–747PubMedCrossRefGoogle Scholar
  97. Fischer A, Fischer U (1995) On the life-style and life-cycle of the luminescent polychaete Odontosyllis enopla (Annelida, Polychaeta). Invertebr Biol 114:236–247CrossRefGoogle Scholar
  98. Francis WR, Powers ML, Haddock SHD (2014) Characterization of an anthraquinone fluor from the bioluminescent, pelagic polychaete Tomopteris. Lumin J Biol Chem Lumin 29:1135–1140CrossRefGoogle Scholar
  99. Gaion A, Sartori D, Scuderi A, Fattorini D (2014) Bioaccumulation and biotransformation of arsenic compounds in Hediste diversicolor (Muller 1776) after exposure to spiked sediments. Environ Sci Pollut Res 21:5952–5959CrossRefGoogle Scholar
  100. Garson MJ (2001) Ecological perspectives on marine natural product biosynthesis. In: McClintock B, Baker BJ (eds) Marine chemical ecology, CRC Press LLC, pp 71–114Google Scholar
  101. Gaston GR, Hall J (2000) Lunar periodicity and bioluminescence of swarming Odontosyllis luminosa (Polychaeta: Syllidae) in Belize. Gulf Caribb Res 12:47–51CrossRefGoogle Scholar
  102. Gaston GR, Slattery M (2002) Ecological function of chemical deterrents in a tropical polychaete, Eupolymnia crassicornis (Annelida, Terebellidae), in Belize. Bull Mar Sci 70(3):891–897Google Scholar
  103. Geiszinger AE, Goessler W, Francesconi KA (2002a) Biotransformation of arsenate to the tetramethylarsonium ion in the marine polychaetes Nereis diversicolor and Nereis virens. Environ Sci Technol 36:2905–2910PubMedCrossRefGoogle Scholar
  104. Geiszinger AE, Goessler W, Francesconi KA (2002b) The marine polychaete Arenicola marina: its unusual arsenic compound pattern and its uptake of arsenate from seawater. Mar Environ Res 53:37–50PubMedCrossRefGoogle Scholar
  105. Gerhart DJ, Rittschof D, Mayo SW (1988) Chemical ecology and the search for marine antifoulants- studies of a predator-prey symbiosis. J Chem Ecol 14(10):1905–1916PubMedCrossRefGoogle Scholar
  106. Giangrande A, Licciano M, Pagliara P, Gambi MC (2000) Gametogenesis and larval development in Sabella spallanzanii (Polychaeta: Sabellidae) from the Mediterranean Sea. Mar Biol 136:847–861CrossRefGoogle Scholar
  107. Giangrande A, Cavallo A, Licciano M, Mola E, Pierri C, Trianni L (2005) Utilization of the filter feeder polychaete Sabella spallanzanii Gmelin (Sabellidae) as bioremediator in aquaculture. Aquac Int 13:129–136CrossRefGoogle Scholar
  108. Giangrande A, Licciano M, Schirosi R, Musco L, Stabili L (2014) Chemical and structural defensive external strategies in six sabellid worms (Annelida). Mar Ecol 35:36–45CrossRefGoogle Scholar
  109. Giangrande A, Licciano M, Pasqua M, Fanizzi FP, Migoni D, Stabili L (2016) Heavy metals in five Sabellidae species (Annelida, Polychaeta): ecological implications. Environ Sci Pollut Res 24:3759–3768.  https://doi.org/10.1007/s11356-016-8089-8 CrossRefGoogle Scholar
  110. Gibbs PE, Langston WJ, Burt GR, Pascoe PL (1983) Tharyx marioni (Polychaeta): a remarkable accumulator of arsenic. J Mar Biol Assoc UK 63:313–325CrossRefGoogle Scholar
  111. Giray C, King GM (1997) Predator deterrence and 2,4-dibromophenol conservation by the enteropneusts Saccoglossus bromophenolosus and Protoglossus graveolens. Mar Ecol Prog Ser 159:229–238CrossRefGoogle Scholar
  112. Goerke H, Weber K (1990) Locality-dependent concentrations of bromophenols in Lanice conchilega (Polychaeta: Terebellidae). Comp Biochem Physiol B 97(4):741–744CrossRefGoogle Scholar
  113. Goerke H, Weber K (1991) Bromophenols in Lanice conchilega (Polychaeta, Terebellidae): the influence of sex, weight and season. Bull Mar Sci 48(2):517–523Google Scholar
  114. Goerke H, Emrich R, Weber K, Duchêne JC (1991) Concentrations and localization of brominated metabolites in the genus Thelepus (Polychaeta: Terebellidae). Comp Biochem Physiol B 99(1):203–206CrossRefGoogle Scholar
  115. Gouveneaux A, Mallefet J (2013) Physiological control of bioluminescence in a deep-sea planktonic worm, Tomopteris helgolandica. J Exp Biol 216:4285–4289PubMedCrossRefGoogle Scholar
  116. Haddock SHD, Moline MA, Case JF (2010) Bioluminescence in the sea. Annu Rev Mar Sci 2:443–493CrossRefGoogle Scholar
  117. Hardege JD, Bentley MG, Snape L (1998) Sediment selection by juvenile Arenicola marina. Mar Ecol Prog Ser 166:187–195CrossRefGoogle Scholar
  118. Hay ME (1984) Predictable spatial escapes from herbivory: How do these affect the evolution of herbivore resistance in tropical marine communities? Oecologia 64:396–407PubMedCrossRefGoogle Scholar
  119. Hay ME (1996) Marine chemical ecology: What’s known and what’s next? J Exp Mar Biol Ecol 200:103–134CrossRefGoogle Scholar
  120. Hay ME (1997) The ecology and evolution of seaweed-herbivore interactions on coral reefs. Coral Reefs 16(Suppl 1):67–76Google Scholar
  121. Hay ME (2009) Marine chemical ecology: chemical signals and cues structure marine populations, communities, and ecosystems. Annu Rev Mar Sci 1:193–212CrossRefGoogle Scholar
  122. Hay ME (2011) Crustaceans as powerful models in aquatic chemical ecology. In: Breithaupt T, Thiel M (eds) Chemical communication in crustaceans, 1st edn. Springer-Verlag, New York, pp 41–62.  https://doi.org/10.1007/978-0-387-77101-4_3 Google Scholar
  123. Hay ME, Fenical W (1988) Marine plant-herbivore interactions: The ecology of chemical defense. Annu Rev Ecol Syst 19:111–145CrossRefGoogle Scholar
  124. Hay ME, Fenical W (1996) Chemical ecology and marine biodiversity: insights and products from the sea. Oceanography 9(1):10–20CrossRefGoogle Scholar
  125. Hay ME, Duffy E, Pfister CA, Fenical W (1987) Chemical defense against different marine herbivores: Are amphipods insect equivalents? Ecology 68(6):1567–1580PubMedCrossRefGoogle Scholar
  126. Herrera AA (1979) Electrophysiology of bioluminescent excitable epithelial cells in a polynoid polychaete worm. J Comp Physiol A 129:67–78CrossRefGoogle Scholar
  127. Higa T, Scheuer PJ (1974) Thelepin, a new metabolite from the marine annelid Thelepus setosus. J Amer Chem Soc 96(7):2246–2248CrossRefGoogle Scholar
  128. Higa T, Scheuer PJ (1975) Constituents of the marine annelid Thelepus setosus. Tetrahedron 31:2379–2381CrossRefGoogle Scholar
  129. Higa T, Fujiyama T, Scheuer PJ (1980) Halogenated phenol and indole constituents of acorn worms. Comp Biochem Physiol 65B:525–530Google Scholar
  130. Hill RA (2003) Marine natural products. Annu Rep Prog Chem Sect B 99:183–207CrossRefGoogle Scholar
  131. Hill RA (2004) Marine natural products. Annu Rep Prog Chem Sect B 100:169–189CrossRefGoogle Scholar
  132. Hill RA (2005) Marine natural products. Annu Rep Prog Chem Sect B 101:124–136CrossRefGoogle Scholar
  133. Hill RA (2006) Marine natural products. Annu Rep Prog Chem Sect B 102:123–137CrossRefGoogle Scholar
  134. Hill RA (2007) Marine natural products. Annu Rep Prog Chem Sect B 103:125–139CrossRefGoogle Scholar
  135. Hill RA (2008) Marine natural products. Annu Rep Prog Chem Sect B 104:127–141CrossRefGoogle Scholar
  136. Hill RA (2009) Marine natural products. Annu Rep Prog Chem Sect B 105:150–166CrossRefGoogle Scholar
  137. Hill RA (2010) Marine natural products. Annu Rep Prog Chem Sect B 106:156–173CrossRefGoogle Scholar
  138. Hill RA (2011) Marine natural products. Annu Rep Prog Chem Sect B107:138–156CrossRefGoogle Scholar
  139. Hill RA (2012) Marine natural products. Annu Rep Prog Chem Sect B Org Chem 108:131–146CrossRefGoogle Scholar
  140. Hill RA (2013) Marine natural products. Annu Rep Prog Chem Sect B Org Chem 109:146–166CrossRefGoogle Scholar
  141. Hu Y, Chen J, Hu G, Yu J, Zhu X, Lin Y, Chen S, Yuan J (2015) Statistical research on the bioactivity of new marine natural products discovered during the 28 years from 1985 to 2012. Mar Drugs 13(1):202–221PubMedPubMedCentralCrossRefGoogle Scholar
  142. Huber ME, Arneson CA, Widder EA (1989) Extremely blue bioluminescence in the polychaete Polycirrus perplexus (Terebellidae). Bull Mar Sci 44:1236–1239Google Scholar
  143. Ianora A, Boersma M, Casotti R, Fontana A, Harder J, Hoffmann F, Pavia H, Potin P, Poulet SA, Toth G (2006) The H. T. Oodum synthesis essay: new trends in marine chemical ecology. Estuar Coasts 29(4):531–551CrossRefGoogle Scholar
  144. Inoue S, Okada K, Tanino H, Kakoi H, Horii N (1990) 6-Propionyllumazines from the marine polychaete, Odontosyllis undecimdonta. Chem Lett 19(3):367–368CrossRefGoogle Scholar
  145. Inoue S, Okada K, Tanino H, Kakoi H, Ohnishi Y, Horii N (1991) New lumazines from the marine polychaete, Odontosyllis undecimdonta. Chem Lett 20:563–564CrossRefGoogle Scholar
  146. Inoue S, Okada K, Tanino H, Kakoi H (1993) A new hexagonal cyclic enol phosphate of 6-β-hydroxypropionyllumazines from the marine swimming polychaete, Odontosyllis undecimdonta. Heterocycles 35(1):147–150CrossRefGoogle Scholar
  147. Iori D, Forti L, Massamba-N’Siala G, Prevedelli D, Simonini R (2014) Toxicity of the purple mucus of the polychaete Halla parthenopeia (Oenonidae) revealed by a battery of ecotoxicological bioassays. Sci Mar 78(4):589–595CrossRefGoogle Scholar
  148. Ishii T, Otake T, Okoshi K, NakaharaM NR (1994) Intracellular localization of vanadium in the fan worm Pseudopotamilla occelata. Mar Biol 121:143–151CrossRefGoogle Scholar
  149. Israel M, Lesbats B (1981) Chemiluminescent determination of acetylcholine and continuous detection of its release from torpedo eletric organ synapses and synaptosomes. Neurochem Int 3(1):81–90PubMedCrossRefGoogle Scholar
  150. Jensen PR, Fenical W (1994) Strategies for the discovery of secondary metabolites from marine bacteria: ecological perspectives. Annu Rev Microbiol 48:559–584PubMedCrossRefGoogle Scholar
  151. Jensen PR, Fenical W (1996) Marine bacterial diversity as a resource for novel microbial products. J Ind Microbiol 17:346–351CrossRefGoogle Scholar
  152. Jumars PA, Dorgan KM, Lindsay SM (2015) Diet of worms emended: an update of polychaete feeding guilds. Annu Rev Mar Sci 7:497–520CrossRefGoogle Scholar
  153. Kakoi H, Tanino H, Okada K, Inoue S (1995) 6-Acyllumazines from the marine polychaete, Odontosyllis undecimdonta. Heterocycles 41(4):789–797CrossRefGoogle Scholar
  154. Kamanos KAD, Withey JM (2012) Enantioselective total synthesis of (R)-(−)-complanine. Beilstein J Org Chem 8:1695–1699.  https://doi.org/10.3762/bjoc.8.192 PubMedPubMedCentralCrossRefGoogle Scholar
  155. Kennedy GY, Nicol JAC (1959) Pigments of Chaetopterus variopedatus (Polychaeta). Proc R Soc Lond B Biol Sci 150(941):509–538PubMedCrossRefGoogle Scholar
  156. Kicklighter CE, Hay ME (2006) Integrating prey defensive traits: contrasts of marine worms from temperate and tropical habitats. Ecol Monogr 76(2):195–215CrossRefGoogle Scholar
  157. Kicklighter CE, Hay ME (2007) To avoid or deter: interactions among defensive and escape strategies in sabellid worms. Oecologia 151:161–173.  https://doi.org/10.1007/s00442-006-0567-0 PubMedCrossRefGoogle Scholar
  158. Kicklighter CE, Kubanek J, Barsby T, Hay ME (2003) Palatability and defense of some tropical infaunal worms: alkylpyrrole sulfamates as deterrents to fish feeding. Mar Ecol Prog Ser 263:299–306CrossRefGoogle Scholar
  159. Kicklighter CE, Fisher CR, Hay ME (2004a) Chemical defense of hydrothermal vent and hydrocarbon seep organisms: A preliminary assessment using shallow-water consumers. Mar Ecol Prog Ser 275:11–19CrossRefGoogle Scholar
  160. Kicklighter CE, Kubanek J, Hay ME (2004b) Do brominated natural products defend marine worms from consumers? Some do, most don’t. Limnol Oceanogr 49(2):430–441CrossRefGoogle Scholar
  161. King GM (1986) Inhibition of microbial activity in marine sediments by a bromophenol from a hemichordate. Nature 323:257–259CrossRefGoogle Scholar
  162. King GM (1988) Dehalogenation in marine sediments containing natural sources of halophenols. Appl Environ Microbol 54(12):3079–3085Google Scholar
  163. Kubanek J, Whalen KE, Engel S, Kelly SR, Henkel TP, Fenical W, Pawlik JR (2002) Multiple defensive roles for triterpene glycosides from two Caribbean sponges. Oecologia 131:125–136.  https://doi.org/10.1007/s00442-001-0853-9 PubMedCrossRefGoogle Scholar
  164. Kubanek J, Jensen PR, Keifer PA, Sullards MC, Collins DO, Fenical W (2003) Seaweed resistance to microbial attack: A targeted chemical defense against marine fungi. Proc Natl Acad Sci USA 100(12):6916–6921PubMedPubMedCentralCrossRefGoogle Scholar
  165. Kudenov JD (1995) Family Amphinomidae Lamarck 1818. In: Blake JA, Hilbig B, Scott PH (eds) Taxonomic atlas of the benthic fauna of the Santa Maria Basin and Western Santa Barbara Channel, Volume 5. The Annelida part 2–Polychaeta: Phyllodocida (Syllidae and Scale bearing families), Amphinomida and Eunicida. Santa Barbara Museum of Natural History, Santa Barbara, California, pp 207–215Google Scholar
  166. Kuffner IB, Paul VJ (2004) Effects of the benthic cyanobacterium Lyngbya majuscula on larval recruitment of the reef corals Acropora surculosa and Pocillopora damicornis. Coral Reefs 23:455–458CrossRefGoogle Scholar
  167. Kurata K, Taniguchii K, Takashima K, Hayashi I, Suzuki M (1997) Feeding-deterrent bromophenols from Odonthalia corymbifera. Phytochemistry 45(3):485–4487CrossRefGoogle Scholar
  168. Kurisaki E, Kato N, Ishida T, Matsumoto A, Shinohara K, Hiraiwa K (2010) Fatal human poisoning with Padan TM: A cartap-containing pesticide. Clin Toxicol 48:153–155.  https://doi.org/10.3109/15563650903505166 CrossRefGoogle Scholar
  169. Lane AL, Moore BS (2011) A sea of biosynthesis: marine natural products meet the molecular age. Nat Prod Rep 28:411–428.  https://doi.org/10.1039/c0np90032j PubMedCrossRefGoogle Scholar
  170. Lane AL, Nyadonga L, Galhenaa AS, Shearerb TL, Stouta EP, Parryc RM, Kwasnika M, Wangc MD, Hayb ME, Fernandeza FM, Kubanek J (2009) Desorption electrospray ionization mass spectrometry reveals surface-mediated antifungal chemical defense of a tropical seaweed. Proc Natl Acad Sci USA 106(18):7314–7319PubMedPubMedCentralCrossRefGoogle Scholar
  171. Latz MI, Frank TM, Case JF (1988) Spectral composition of bioluminescence of epipelagic organisms from the Sargasso Sea. Mar Biol 98:441–446CrossRefGoogle Scholar
  172. Leal MC, Puga J, Serôdio J, Gomes NCM, Calado R (2012) Trends in the discovery of new marine natural products from invertebrates over the last two decades – Where and what are we bioprospecting? PLoS ONE 7(1):e30580.  https://doi.org/10.1371/journal.pone.0030580 PubMedPubMedCentralCrossRefGoogle Scholar
  173. Lebar MD, Heimbegner JL, Baker BJ (2007) Cold-water marine natural products. Nat Prod Rep 24:774–797.  https://doi.org/10.1039/b516240h PubMedCrossRefGoogle Scholar
  174. Li JY, Endo H, Agatsuma Y, Taniguchi K (2011) Inhibition of larval survival and metamorphosis of the sea urchin Strongylocentrotus intermedius by 2,4-dibromophenol and 2,4,6-tribromophenol. Aquac Sci 59(2):247–253Google Scholar
  175. Licciano M, Stabili L, Giangrande A (2005) Clearance rates of Sabella spallanzanii and Branchiomma luctuosum (Annelida: Polychaeta) on a pure culture of Vibrio alginolyticus. Water Res 39:4375–4384.  https://doi.org/10.1016/j.watres.2005.09.003 PubMedCrossRefGoogle Scholar
  176. Licciano M, Stabili L, Giangrande A, Cavallo RA (2007) Bacterial accumulation by Branchiomma luctuosum (Annelida: Polychaeta): a tool for biomonitoring marine systems and restoring polluted waters. Mar Environ Res 63:291–302.  https://doi.org/10.1016/j.marenvres.2006.11.003 PubMedCrossRefGoogle Scholar
  177. Lichtenegger HC, Schöberl T, Bartl MH, Waite H, Stucky GD (2003) High abrasion resistance with sparse mineralization: copper biomineral in worm jaws. Science 298:389–392.  https://doi.org/10.1073/pnas.1632658100 CrossRefGoogle Scholar
  178. Lincoln DE, Fielman KT, Marinelli RL, Woodin SA (2005) Bromophenol accumulation and sediment contamination by the marine annelids Notomastus lobatus and Thelepus crispus. Biochem Syst Ecol 33:559–570.  https://doi.org/10.1016/j.bse.2004.12.006 CrossRefGoogle Scholar
  179. Lindquist N (2002) Chemical defense of early life stages of benthic marine invertebrates. J Chem Ecol 28(10):1987–2000PubMedCrossRefGoogle Scholar
  180. Lindquist N, Hay ME (1996) Palatability and chemical defense of marine invertebrate larvae. Ecol Monogr 66(4):431–450CrossRefGoogle Scholar
  181. Lovell CR, Steward CC, Phillips T (1999) Activity of marine sediment bacterial communities exposed to 4-bromophenol, a polychaete secondary metabolite. Mar Ecol Prog Ser 179:241–246CrossRefGoogle Scholar
  182. Lumbang WA, Paul VJ (1996) Chemical defenses of the tropical green seaweed Neomeris anndata Dickie: effects of multiple compounds on feeding by herbivores. J Exp Mar Biol Ecol 201:185–195CrossRefGoogle Scholar
  183. Mahon AR, Amsler CD, McClintock JB, Amsler MO, Baker BJ (2003) Tissue-specific palatability and chemical defenses against macropredators and pathogens in the common articulate brachiopod Liothyrella uva from the Antarctic Peninsula. J Exp Mar Biol Ecol 290:197–210.  https://doi.org/10.1016/S0022-0981(03)00075-3 CrossRefGoogle Scholar
  184. Maltseva AL, Kotenko ON, Kokryakov VN, Starunov VV, Krasnodembskaya AD (2014) Expression pattern of arenicins—the antimicrobial peptides of polychaete Arenicola marina. Front Physiol 5(497):1–11.  https://doi.org/10.3389/fphys.2014.00497 Google Scholar
  185. Manaranche R, Thieffry M, Israel M (1980) Effect of the venom of Glycera convoluta on the spontaneous quantal release of transmitter. J Cell Biol 85:446–458PubMedCrossRefGoogle Scholar
  186. Marcano L, Nusetti O, Rodriguez-Grau J, Briceno J, Vilas J (1997) Coelomic fluid lysozyme activity induction in the polychaete Eurythoe complanata as a biomarker of heavy metal toxicity. Bull Environ Contam Toxicol 59:22–28PubMedCrossRefGoogle Scholar
  187. Martin M, Anctil M (1984) Luminescence control in the tubeworm Chaetopterus variopedatus: role of the nerve cord and photogenic gland. Biol Bull 166:583–593CrossRefGoogle Scholar
  188. Martin D, Uriz MJ (1993) Chemical bioactivity of Mediterranean benthic organisms against embryos and larvae of marine invertebrates. J Exp Mar Biol Ecol 173:11–27CrossRefGoogle Scholar
  189. Martin D, Le Nourichel C, Uriz MJ, Bhaud M, Duchêne JC (2000) Ontogenic shifts in chemical defenses of the northwest Mediterranean Sea Eupolymnia nebulosa (Polychaeta, Terebellidae). Bull Mar Sci 67(1):287–298Google Scholar
  190. Mastrodonato M, Lepore E, Gherardi M, Zizza S, Sciscioli M, Ferri D (2005) Histochemical and ultrastructural analysis of the epidermal gland cells of Branchiomma luctuosum (Polychaeta, Sabellidae). Invertebr Biol 124(4):303–309.  https://doi.org/10.1111/j.1744-7410.2005.00028.x CrossRefGoogle Scholar
  191. Mastrodonato M, Gherardi M, Todisco G, Sciscioli M, Lepore E (2006) The epidermis of Timarete filigera (Polychaeta, Cirratulidae): histochemical and ultrastructural analysis of the gland cells. Tissue Cell 38:279–284.  https://doi.org/10.1016/j.tice.2006.06.003 PubMedCrossRefGoogle Scholar
  192. McClintock JB, Baker BJ (1997) A review of the chemical ecology of antartic marine invertebrates. Am Zool 37:329–342CrossRefGoogle Scholar
  193. Meredith TL, Cowart JD, Henkel TP, Pawlik JR (2007) The polychaete Cirriformia punctata is chemically defended against generalist coral reef predators. J Exp Mar Biol Ecol 353:198–202.  https://doi.org/10.1016/j.jembe.2007.08.023 CrossRefGoogle Scholar
  194. Meunier FA, Feng ZP, Molgó J, Zamponi GW, Schiavo G (2002) Glycerotoxin from Glycera convoluta stimulates neurosecretion by up-regulating N-type Ca2+ channel activity. EMBO J 21(24):6733–6743PubMedPubMedCentralCrossRefGoogle Scholar
  195. Meunier FA, Nguyen TH, Colasante C, Luo F, Sullivan RKP, Lavidis NA, Molgó J, Meriney SD, Schiavo G (2010) Sustained synaptic-vesicle recycling by bulk endocytosis contributes to the maintenance of high-rate neurotransmitter release stimulated by glycerotoxin. J Cell Sci 123(7):1131–1140.  https://doi.org/10.1242/jcs.049296 PubMedPubMedCentralCrossRefGoogle Scholar
  196. Michel C, Keil B (1975) Biologically active proteins in venomous glands of polychaetous annelid, Glycera convoluta Keferstein. Comp Biochem Physiol 50:29–32Google Scholar
  197. Miron MJ, La Rivière L, Bassot JM, Anctil M (1987) Immunohistochemical and radioautographic evidence of monoamine-containing cells in bioluminescent elytra of the scale-worm Harmothoe imbricata (Polychaeta). Cell Tissue Res 249:547–556CrossRefGoogle Scholar
  198. Molinski TF, Dalisay DS, Lievens SL, Saludes JP (2009) Drug development from marine natural products. Nat Rev 8:69–85.  https://doi.org/10.1038/nrd2487 Google Scholar
  199. Morel N, Thieffry M, Manaranche R (1983) Binding of Glycera convoluta neurotoxin to cholinergic nerve terminal plasma membranes. J Cell Biol 97:1737–1744PubMedCrossRefGoogle Scholar
  200. Mouneyrac C, Mastain O, Amiard JC, Amiard-Triquet C, Beaunier P, Jeantet AY, Smith BD, Rainbow PS (2003) Trace-metal detoxification and tolerance of the estuarine worm Hediste diversicolor chronically exposed in their environment. Mar Biol 143:731–744.  https://doi.org/10.1007/s00227-003-1124-6 CrossRefGoogle Scholar
  201. Nagawa Y, Saji Y, Chiba S, Yui T (1971) Neuromuscular blocking actions of Nereistoxin and its derivatives and antagonism by sulfhydryl compounds. Jpn J Pharmacol 21:185–197PubMedCrossRefGoogle Scholar
  202. Nakamura K, Tachikawa Y, Kitamura M, Ohno O, Suganuma M, Uemura D (2008) Complanine, an inflammation-inducing substance isolated from the marine fireworm Eurythoe complanata. Org Biomol Chem 6:2058–2060.  https://doi.org/10.1039/b803107j PubMedCrossRefGoogle Scholar
  203. Nakamura K, Tachikawa Y, Uemura D (2009) (−)-Complanine, an inflammatory substance of marine fireworm: a synthetic study. Beilstein J Org Chem 5(12):1–4.  https://doi.org/10.3762/bjoc.5.12 Google Scholar
  204. Nakamura K, Tachikawa Y, Ohno O, Kitamura M, Suganuma M, Uemura D (2010) Neocomplanines A and B, a Complanine family isolated from the marine fireworm. J Nat Prod 73:303–305.  https://doi.org/10.1021/np900694j PubMedCrossRefGoogle Scholar
  205. Namera A, Watanabe T, Yashiki M, Kojima T (1999) Simple and sensitive analysis of Nereistoxin and its metabolites in human serum using headspace solid-phase microextraction and gas chromatography–mass spectrometry. J Chromatogr Sci 37:77–82PubMedCrossRefGoogle Scholar
  206. Nicol JAC (1952a) Studies on Chaetopterus variopedatus (Renier). I. The light-producing glands. J Mar Biol Assoc XXX:417–431CrossRefGoogle Scholar
  207. Nicol JAC (1952b) Studies on Chaetopterus variopedatus (Renier). II. Nervous control of light production. J Mar Biol Assoc XXX:433–452CrossRefGoogle Scholar
  208. Nicol JAC (1957) Luminescence in polynoids. III Propagation of excitation through the nerve cord. J Mar Biol Assoc UK 36:271–273CrossRefGoogle Scholar
  209. Nitta S (1934) Uber Nereistoxin, einen giftigen Bestandteil von Lumbriconereis heteropoda Marenz (Eunicidae). Yakugaku Zasshi 54:648–652 Google Scholar
  210. Notti A, Fattorini D, Razzetti EM, Regoli F (2007) Bioaccumulation and biotransformation of arsenic in the Mediterranean Polychaete Sabella spallanzanii: experimental observations. Environ Toxicol Chem 26(6):1186–1191PubMedCrossRefGoogle Scholar
  211. Nygren A, Norlinder E, Panova M, Pleijel F (2011) Colour polymorphism in the polychaete Harmothoe imbricata (Linnaeus, 1767). Mar Biol Res 7(1):54–62.  https://doi.org/10.1080/17451001003713555 CrossRefGoogle Scholar
  212. Nylund GM, Pavia H (2005) Chemical versus mechanical inhibition of fouling in the red alga Dilsea carnosa. Mar Ecol Prog Ser 299:111–121CrossRefGoogle Scholar
  213. Nylund GM, Gribben PE, De Nys R, Steinberg PD, Pavia H (2007) Surface chemistry versus whole-cell extracts: antifouling tests with seaweed metabolites. Mar Ecol Prog Ser 329:73–84CrossRefGoogle Scholar
  214. Osborn KJ, Haddock SHD, Pleijel F, Madin LP, Rouse GW (2009) Deep-sea, swimming worms with luminescent “Bombs”. Science 325(5943):964.  https://doi.org/10.1126/science.1172488 PubMedCrossRefGoogle Scholar
  215. Ovchinnikova TV, Aleshina GM, Balandin SV, Krasnosdembskaya AD, Markelov ML, Frolova EI, Leonova YF, Tagaev AA, Krasnodembsky EG, Kokryakov VN (2004) Purification and primary structure of two isoforms of arenicin, a novel antimicrobial peptide from marine polychaeta Arenicola marina. FEBS Lett 577:209–214.  https://doi.org/10.1016/j.febslet.2004.10.012 PubMedCrossRefGoogle Scholar
  216. Pan W, Liu X, Ge F, Han J, Zheng T (2004) Perinerin, a novel antimicrobial peptide purified from the clamworm Perinereis aibuhitensis Grube and its partial characterization. J Biochem 135:297–304.  https://doi.org/10.1093/jb/mvh036 PubMedCrossRefGoogle Scholar
  217. Pardo EV, Amaral ACZ (2004) Feeding behavior of the cirratulid Cirriformia filigera (Delle Chiaje, 1825) (Annelida: Polychaeta). Braz J Biol 64(2):283–288PubMedCrossRefGoogle Scholar
  218. Park Y, Choe S, Lee H, Jo J, Park Y, Kim E, Pyo J, Jung JH (2015) Advanced analytical method of Nereistoxin using mixed-mode cationic exchange solid-phase extraction and GC/MS. Forensic Sci Int 252:143–149.  https://doi.org/10.1016/j.forsciint.2015.04.010 PubMedCrossRefGoogle Scholar
  219. Paul VJ, Fenical W (1986) Chemical defense in tropical green algae, order Caulerpales. Mar Ecol Prog Ser 34:157–169CrossRefGoogle Scholar
  220. Paul VJ, Puglisi MP (2004) Chemical mediation of interactions among marine organisms. Nat Prod Rep 21:189–209.  https://doi.org/10.1039/b302334f PubMedCrossRefGoogle Scholar
  221. Paul VJ, Ritson-Williams R (2008) Marine chemical ecology. Nat Prod Rep 25:662–695.  https://doi.org/10.1039/b702742g PubMedCrossRefGoogle Scholar
  222. Paul VJ, Van Alstyne KL (1988) Chemical defense and chemical variationin some tropical Pacific species of Halimeda (Halimedaceae: Chlorophyta). Coral Reefs 6:263–269CrossRefGoogle Scholar
  223. Paul VJ, Lindquist N, Fenical W (1990) Chemical defenses of the tropical ascidian Atapozoa sp. and its nudibranch predators Nembrotha spp. Mar Ecol Prog Ser 59:109–118CrossRefGoogle Scholar
  224. Paul VJ, Puglisi MP, Ritson-Williams R (2006) Marine chemical ecology. Nat Prod Rep 23:153–180.  https://doi.org/10.1039/b404735b PubMedCrossRefGoogle Scholar
  225. Paul VJ, Ritson-Williams R, Sharp K (2011) Marine chemical ecology in benthic environments. Nat Prod Rep 28:345–387.  https://doi.org/10.1039/c0np00040j PubMedCrossRefGoogle Scholar
  226. Pavia H, Toth GB, Lindgren A, Aberg P (2003) Intraspecific variation in the phlorotannin content of the brown alga Ascophyllum nodosum. Phycologia 42(4):378–383CrossRefGoogle Scholar
  227. Pawlik JR (1993) Marine invertebrate chemical defenses. Chem Rev 93(5):1911–1922CrossRefGoogle Scholar
  228. Pawlik JR (2012) Antipredatory defensive roles of natural products from marine invertebrates. In: Fattorusso E, Gerwick WH, Taglilatela-Scarfati O (eds) Handbook of marine natural products, 1st edn. Springer, Netherlands, pp 677–710.  https://doi.org/10.1007/978-90-481-3834-0_12 CrossRefGoogle Scholar
  229. Pawlik JR, Chanas B, Toonen RJ, Fenical W (1995) Defenses of Caribbean sponges against predatory reef fish. I. Chemical deterrency. Mar Ecol Prog Ser 127:183–194CrossRefGoogle Scholar
  230. Pennings SC, Siska EL, Bertness MD (2001) Latitudinal differences in plant palatability in Atlantic coast salt marshes. Ecology 82(5):1344–1359CrossRefGoogle Scholar
  231. Pennings SC, Ho CK, Salgado CS, Wieski K, Davé N, Kunza AE, Wason EL (2009) Latitudinal variation in herbivore pressurein Atlantic Coast salt marshes. Ecology 90(1):183–195PubMedCrossRefGoogle Scholar
  232. Pereira RC, Da Gama BAP, Teixeira VL, Yoneshigue-Valentin Y (2003) Ecological roles of natural products of the Brazilian red seaweed Laurencia obtusa. Braz J Biol 63(4):665–672PubMedCrossRefGoogle Scholar
  233. Pereira DM, Valentão P, Andrade PB (2014) Marine natural pigments: chemistry, distribution and analysis. Dyes Pigments 111:124–134.  https://doi.org/10.1016/j.dyepig.2014.06.011 CrossRefGoogle Scholar
  234. Petrash DA, Lalonde SV, Gingras MK, Konhauser KO (2011) A surrogate approach to studying the chemical reactivity of burrow mucous linings in marine sediments. Palaios 26(9):594–600.  https://doi.org/10.2110/palo.2010.p10-140r CrossRefGoogle Scholar
  235. Plyuscheva M, Martin D (2009) On the morphology of elytra as luminescent organs in scale-worms (Polychaeta, Polynoidae). Zoosymposia 2:379–389Google Scholar
  236. Prezant RS (1980) An antipredation mechanism of the polychaete Phyllodoce mucosa with notes on similar mechanisms in other potential prey. Fish Bull 77:605–616Google Scholar
  237. Prota G, D'Agostino M, Misuraca G (1970) Isolation and characterization of Hallachrome, a red pigment from the sea worm Halla parthenopeia. Specialia 27(1):15–16Google Scholar
  238. Prota G, D’Agostino M, Misuraca G (1972) The structure of Hallachrome: 7-Hydroxy-8-methoxy-6-methyl-1,2-anthraquinone. J Chem Soc Perkin Trans 1 13:1614–1616Google Scholar
  239. Puglisi MP, Sneed JM, Sharp KH, Ritson-Williams R, Paul VJ (2014) Marine chemical ecology in benthic environments. Nat Prod Rep 31:1510–1553.  https://doi.org/10.1039/c4np00017j PubMedCrossRefGoogle Scholar
  240. Rasher DB, Hay ME (2010) Chemically rich seaweeds poison corals when not controlled by herbivores. Proc Natl Acad Sci USA 107(21):9683–9688PubMedPubMedCentralCrossRefGoogle Scholar
  241. Rasher DB, Hay ME (2014) Competition induces allelopathy but suppresses growth and anti-herbivore defence in a chemically rich seaweed. Proc R Soc B 281:2013–2615CrossRefGoogle Scholar
  242. Rasher DB, Stout EP, Engel S, Kubanek J, Hay ME (2011) Macroalgal terpenes function as allelopathic agents against reef corals. Proc Natl Acad Sci USA 108(43):17726–17731PubMedPubMedCentralCrossRefGoogle Scholar
  243. Ribeiro SM, Bianco EM, Rogers R, Teixeira VL, Pereira RC (2010) Chemical defense of Hymeniacidon heliophila (Porifera: Halichondrida) aganist tropical predators. Braz J Oceanogr 58(4):315–321CrossRefGoogle Scholar
  244. Rouse GW, Pleijel F (2001) Polychaetes. Oxford University Press, OxfordGoogle Scholar
  245. Rouse GW, Pleijel F (2006) Annelid phylogeny and systematics. In: Rouse GW, Pleijel F (eds) Reproductive biology and phylogeny of Annelida. Science Publishers, Enfield, New Hampshire, pp 3–21Google Scholar
  246. Rouse GW, Pleijel F (2007) Annelida. Zootaxa 1668:245–264Google Scholar
  247. Schaum CE, Batty R, Last KS (2013) Smelling danger – alarm cue responses in the polychaete Nereis (Hediste) diversicolor (Müller, 1776) to potential fish predation. PLoS ONE 8(10):e77431.  https://doi.org/10.1371/journal.pone.0077431 PubMedPubMedCentralCrossRefGoogle Scholar
  248. Schenning M, Proctor DT, Ragnarsson L, Barbier J, Lavidis NA, Molgó JJ, Zamponi GW, Schiavo G, Meunier FA (2006) Glycerotoxin stimulates neurotransmitter release from N-type Ca2+ channel expressing neurons. J Neurochem 98:894–904.  https://doi.org/10.1111/j.1471-4159.2006.03938.x PubMedCrossRefGoogle Scholar
  249. Schmitt TM, Hay ME, Lindquist N (1995) Constraints on chemically mediated coevolution: multiple functions for seaweed secondary metabolites. Ecology 76(1):107–123CrossRefGoogle Scholar
  250. Sears MA, Gerhart DJ, Rittschof D (1990) Antifouling agents from marine sponge Lissodendoryx isodictyalis Carter. J Chem Ecol 16(3):791–799PubMedCrossRefGoogle Scholar
  251. Selander E, Jakobsenb HH, Lombarda F, Kiørboe T (2011) Grazer cues induce stealth behavior in marine dinoflagellates. Proc Natl Acad Sci USA 108(10):4030–4034PubMedPubMedCentralCrossRefGoogle Scholar
  252. Selander E, Kubanek J, Hambergd M, Andersson MX, Cervinc G, Paviac H (2015) Predator lipids induce paralytic shellfish toxins inbloom-forming algae. Proc Natl Acad Sci USA 112(20):6395–6400PubMedPubMedCentralCrossRefGoogle Scholar
  253. Seo JK, Nam BH, Go HJ, Jeong M, Lee KY, Cho SM, Lee IA, Park NG (2016) Hemerythrin-related antimicrobial peptide, msHemerycin, purified from the body of the lugworm, Marphysa sanguinea. Fish Shellfish Immunol 57:49–59.  https://doi.org/10.1016/j.fsi.2016.08.018 PubMedCrossRefGoogle Scholar
  254. Sheikh YM, Djerassi C (1975) 2,6-Dibromophenol and 2,4,6-tribromophenols – antiseptic secondary metabolites of Phoronopsis viridis. Experientia 31(3):265–266PubMedCrossRefGoogle Scholar
  255. Shibata T, Miyasaki T, Miyake H, Tanaka R, Kawaguchi S (2014) The Influence of phlorotannins and bromophenols on the feeding behavior of marine herbivorous gastropod Turbo cornutus. Am J Plant Sci 5:387–392CrossRefGoogle Scholar
  256. Shimomura O (2006) Annelida. In: Shimomura O (ed) Bioluminescence: chemical principles and methods, revised edition. World Scientific Publishing Co Pte Ltd, Singapore, pp 216–247CrossRefGoogle Scholar
  257. Skropeta D (2008) Deep-sea natural products. Nat Prod Rep 25(6):989–1216.  https://doi.org/10.1039/b808743a CrossRefGoogle Scholar
  258. Skropeta D, Wei L (2014) Recent advances in deep-sea natural products. Nat Prod Rep 31(8):999–1025.  https://doi.org/10.1039/c3np70118b PubMedCrossRefGoogle Scholar
  259. Slattery M, McClintock JB, Heineb JN (1995) Chemical defenses in Antarctic soft corals: evidence for antifouling compounds. J Exp Mar Biol Ecol 190:61–77CrossRefGoogle Scholar
  260. Stabili L, Licciano M, Giangrande A, Fanelli G, Cavallo RA (2006) Sabella spallanzanii filter-feeding on bacterial community: ecological implications and applications. Mar Environ Res 61:4–92.  https://doi.org/10.1016/j.marenvres.2005.06.001 CrossRefGoogle Scholar
  261. Stabili L, Schirosi R, Licciano M, Giangrande A (2009) The mucus of Sabella spallanzanii (Annelida, Polychaeta): its involvement in chemical defence and fertilization success. J Exp Mar Biol Ecol 374:144–149.  https://doi.org/10.1016/j.jembe.2009.04.016 CrossRefGoogle Scholar
  262. Stabili L, Schirosi R, Di Benedetto A, Merendino A, Villanova L, Giangrande A (2011) First insights into the biochemistry of Sabella spallanzanii (Annelida: Polychaeta) mucus: a potentially unexplored resource for applicative purposes. J Mar Biol Assoc UK 91(1):199–208.  https://doi.org/10.1017/S0025315410001013 CrossRefGoogle Scholar
  263. Stabili L, Schirosi R, Licciano M, Giangrande A (2014a) Role of Myxicola infundibulum (Polychaeta, Annelida) mucus: from bacterial control to nutritional home site. J Exp Mar Biol Ecol 461:344–349.  https://doi.org/10.1016/j.jembe.2014.09.005 CrossRefGoogle Scholar
  264. Stabili L, Giangrande A, Pizzolante G, Caruso G, Alifano P (2014b) Characterization of Vibrios diversity in the mucus of the polychaete Myxicola infundibulum (Annellida, Polichaeta). Microb Ecol 67:186–194.  https://doi.org/10.1007/s00248-013-0312-2 PubMedCrossRefGoogle Scholar
  265. Stachowicz JJ (2001) Chemical ecology of mobile benthic invertebrates: predators and prey, allies and competitors. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC Press, Boca Raton, pp. 157–194Google Scholar
  266. Steinberg PD (1985) Feeding preferences of Tegula funebralis and chemical defenses of marine brown algae. Ecol Monogr 55(3):333–349CrossRefGoogle Scholar
  267. Steinberg PD (1988) Effects of quantitative and qualitative variation in phenolic compounds on feeding in three species of marine invertebrate herbivores. J Exp Mar Biol Ecol 120:221–237CrossRefGoogle Scholar
  268. Steward CC, Lovell CR (1997) Respiration and assimilation of 4-bromophenol by estuarine sediment bacteria. Microb Ecol 33:198–205PubMedCrossRefGoogle Scholar
  269. Steward CC, Pinckney J, Piceno Y, Lovell CR (1992) Bacterial numbers and activity, microalgal biomass and productivity, and meiofaunal distribution in sediments naturally contaminated with biogenic bromophenols. Mar Ecol Prog Ser 90:61–71CrossRefGoogle Scholar
  270. Steward CC, Nold SC, Ringelberg DB, White DC, Lovell CR (1996) Microbial biomass and community structures in the burrows of bromophenol producing and non-producing marine worms and surrounding sediments. Mar Ecol Prog Ser 133:149–165CrossRefGoogle Scholar
  271. Storch V, Welsch U (1972) Ultrastructure and histochemistry of the integument of air-breathing polychaetes from mangrove swamps of Sumatra. Mar Biol 17:137–144Google Scholar
  272. Suadicani SO, de Freitas JC, Sawaya MI (1993) Pharmacological evidence for the presence of a beta-adrenoceptor-like agonist in the amphinomid polychaete Eurythoe complanata. Comp Biochem Physiol 104C(2):327–332Google Scholar
  273. Sudatti DB, Rodrigues SV, Pereira RC (2006) Quantitative GC-ECD analysis of halogenated metabolites: determination of elatol on surface and within-thallus of Laurencia obtusa. J Chem Ecol 32:835–843.  https://doi.org/10.1007/s10886-006-9033-z PubMedCrossRefGoogle Scholar
  274. Taboada S, Núñez-Pons L, Avila C (2013) Feeding repellence of Antarctic and Sub-Antarctic benthic invertebrates against the omnivorous sea star Odontaster validus. Polar Biol 36:13–25.  https://doi.org/10.1007/s00300-012-1234-z CrossRefGoogle Scholar
  275. Taghon GL (1982) Optimal foraging by deposit-feeding invertebrates: roles of particle size and organic coating. Oecologia (Berl) 52:295–304CrossRefGoogle Scholar
  276. Tanino H, Takakura H, Kakoi H, Okada K, Inoue S (1994) (S)-6-(1-hydroxypropyl) lumazine derivatives from the marine polychaete, Odontosyllis undecimdonta. Heterocycles 38(5):971–974CrossRefGoogle Scholar
  277. Tanino H, Takakura H, Kakoi H, Okada K, Inoue S (1996) (S)-2-methyl-1,5-bis(1,3-dimethyl-6-lumazinyl)-1,5-pentanedione from the marine polychaete, Odontosyllis undecimdonta. Heterocycles 42(1):125–128CrossRefGoogle Scholar
  278. Tasiemski A, Schikorsk D, Le Marrec-Croq F, Camp CPV, Boidin-Wichlacz C, Sautière PE (2007) Hedistin: a novel antimicrobial peptide containing bromotryptophan constitutively expressed in the NK cells-like of the marine annelid, Nereis diversicolor. Dev Comp Immunol 31(8):749–762.  https://doi.org/10.1016/j.dci.2006.11.003 PubMedCrossRefGoogle Scholar
  279. Thacker RW, Becerro MA, Lumbang WA, Paul VJ (1998) Allelopathic interactions between sponges on a tropical reef. Ecology 79(5):1740–1750CrossRefGoogle Scholar
  280. Thornburg CC, Zabriskie TM, McPhail KL (2010) Deep-sea hydrothermal vents: Potential hot spots for natural products discovery? J Nat Prod 73:489–499.  https://doi.org/10.1021/np900662k PubMedCrossRefGoogle Scholar
  281. Toth GB, Pavia H (2000) Water-borne cues induce chemical defense in amarine alga (Ascophyllum nodosum). Proc Natl Acad Sci USA 97(26):14418–14420PubMedPubMedCentralCrossRefGoogle Scholar
  282. Toth GB, Langhamer O, Pavia H (2005) Inducible and constitutive defenses of valuable seaweed tissues: consequences for herbivore fitness. Ecology 86(3):612–618CrossRefGoogle Scholar
  283. Tsuji FI, Hill E (1983) Repetitive cycles of bioluminescence and spawning in the polychaete, Odontosyllis phosphorea. Biol Bull 165(2):444–449PubMedCrossRefGoogle Scholar
  284. Unson MD, Holland ND, Faulkner DJ (1994) A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue. Mar Biol 119:1–11CrossRefGoogle Scholar
  285. Uriz MJ, Martin D, Rosell D (1992) Relationships of biological and taxonomical characteristics to chemically mediated bioactivity in the Mediterranean littoral sponges. Mar Biol 113:287–297Google Scholar
  286. von Reumont BM, Campbell LI, Richter S, Hering L, Sykes D, Hetmank J, Jenner RA, Bleidorn C (2014) A polychaete’s powerful punch: venom gland transcriptomics of Glycera reveals a complex cocktail of toxin homologs. Genome Biol Evol 6(9):2406–2423.  https://doi.org/10.1093/gbe/evu190 CrossRefGoogle Scholar
  287. Wahl M (1989) Marine epibiosis. I. Fouling and antifouling: some basic aspects. Mar Ecol Prog Ser 58:175–189CrossRefGoogle Scholar
  288. Wahl M, Hay ME (1995) Associational resistance and shared doom: effects of epibiosis on herbivory. Oecologia 102:329–340PubMedCrossRefGoogle Scholar
  289. Watson GJ, Hamilton KM, Tuffnail WE (2005) Chemical alarm signalling in the polychaete Nereis (Neanthes) virens (Sars) (Annelida: Polychaeta). Anim Behav 70:1125–1132.  https://doi.org/10.1016/j.anbehav.2005.03.011 CrossRefGoogle Scholar
  290. Watts MJ, Barlow TS, Button M, Sarkar SK, Bhattacharya BD, Alam MA, Gomes A (2013) Arsenic speciation in polychaetes (Annelida) and sediments from the intertidal mudflat of Sundarban mangrove wetland, India. Environ Geochem Health 35:13–25.  https://doi.org/10.1007/s10653-012-9471-1 PubMedCrossRefGoogle Scholar
  291. Weber K, Ernst W (1978) Occurrence of brominated phenols in the marine polychaete Lanice conchilega. Naturwissenschaften 65:262CrossRefGoogle Scholar
  292. Whitfield FB, Drew M, Helidoniotis F, Svoronos D (1999) Distribution of bromophenols in species of marine polychaetes and bryozoans from Eastern Australia and the role of such animals in the flavor of edible ocean fish and prawns (Shrimp). J Agric Food Chem 47:475–4762.  https://doi.org/10.1021/jf9904719 Google Scholar
  293. Woodin SA, Walla MD, Lincoln DE (1987) Occurrence of brominated compounds in soft-bottom benthic organisms. J Exp Mar Biol Ecol 107:209–217CrossRefGoogle Scholar
  294. Woodin SA, Marinelli RL, Lincoln DE (1993) Allelochemical inhibition of recruitament in a sedimentary assemblage. J Chem Ecol 19(3):517–530PubMedCrossRefGoogle Scholar
  295. Woodin SA, Lindsay SM, Lincoln DE (1997) Biogenic bromophenols as negative recruitment cues. Mar Ecol Prog Ser 157:303–306CrossRefGoogle Scholar
  296. Wright JT, De Nys R, Poore AGB, Steinberg PD (2004) Chemical defense in a marine alga: heritability and the potential for selection by herbivores. Ecology 85(11):2946–2959CrossRefGoogle Scholar
  297. Yoon KS, Chen YP, Lovell CR, Lincoln DE, Knapp LW, Woodin SA (1994) Localization of the chloroperoxidase of the capitellid polychaete Notomastus lobatus. Biol Bull 187:215–222PubMedCrossRefGoogle Scholar
  298. Zapata-Vívenes E, Nusetti OA, Marcano L, Esclapes MM, Arredondo L (2005) Immunological responses and wound healing in the polychaete Eurythoe complanata (Annelida: Amphinomidae) exposed to copper. Cienc Mar 31:1–10CrossRefGoogle Scholar
  299. Zimmer RK, Butman CA (2000) Chemical signaling processes in the marine environment. Biol Bull 198(2):168–187.  https://doi.org/10.2307/1542522 PubMedCrossRefGoogle Scholar
  300. Zörner SA, Fischer A (2007) The spatial pattern of bioluminescent flashes in the polychaete Eusyllis blomstrandi (Annelida). Helgol Mar Res 61:55–66.  https://doi.org/10.1007/s10152-006-0053-4 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Marina Cyrino Leal Coutinho
    • 1
  • Valéria Laneuville Teixeira
    • 1
  • Cinthya Simone Gomes Santos
    • 1
  1. 1.Department of Marine Biology, Institute of BiologyFederal Fluminense UniversityNiteróiBrazil

Personalised recommendations