Skip to main content
Log in

A Review of “Polychaeta” Chemicals and their Possible Ecological Role

  • Review Article
  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Despite the many publications concerning the isolation of substances and the many reviews of marine natural products, some groups of organisms remain poorly studied, including “Polychaeta”. In response, this review covers articles published through December 2016 that address marine natural products produced from polychaetes, with a focus on antipredatory strategies, competitors, fouling, and pathogens. A total of 121 compounds were isolated from 1934 to 2016, which includes halogenated aromatics, proteins, amino acids and Lumazine derivatives most notably—with a defensive function were found in the literature, most frequently in the families Sabellidae, Terebellidae, Glyceridae, and Nereididae. The period of highest discovery of natural products in defensive actions for the group was the 2000s. Polychaetes were addressed in 26 revisions of the total 51 articles analyzed and are less reported than other marine invertebrates such as sponges, cnidarians, mollusks, and tunicates. In sum, the present review provides a basis for future research on the marine chemical ecology of polychaetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agatsuma Y, Endo H, Taniguchi K (2008) Inhibitory effect of 2,4-dibromophenol and 2,4,6-tribromophenol on larval survival and metamorphosis of the sea urchin Strongylocentrotus nudus. Fish Sci 74:837–841

    Article  CAS  Google Scholar 

  • Amsler CD, Iken K, McClintock JB, Amsler MO, Peters KJ, Hubbard JM, Furrow FB, Baker BJ (2005) Comprehensive evaluation of the palatability and chemical defenses of subtidal macroalgae from the Antarctic Peninsula. Mar Ecol Prog Ser 294:141–159

    Article  CAS  Google Scholar 

  • Anctil M (1979) The epithelial luminescent system of Chaetopterus variopedatus. Can J Zool 57:1290–1310

    Article  Google Scholar 

  • Anctil M (1981) Luminescence control in isolated notopods of the tube-worm Chaetopterus variopedatus: effects of cholinergic and GABAergic drugs. Comp Biochem Physiol C 68:187–194

    Article  Google Scholar 

  • Andersen RJ, Wolfe MS, Faulkner DJ (1974) Autotoxic antibiotic production by a marine Chromobacterium. Mar Biol 27:281–285

    Article  CAS  Google Scholar 

  • Anderson RS, Chain BM (1982) Antibacterial activity in the coelomic fluid of a marine annelid, Glycera dibranchiata. J Invertebr Pathol 40:320–326

    Article  Google Scholar 

  • Assmann M, Lichte E, Köck M (2004) Multiple defensive roles for bromopyrrole alkaloids from Caribbean Agelas sponges. Boll Mus Ist Biol Univ Genova 68:187–193

    Google Scholar 

  • Asworth RB, Cormier MJ (1967) Isolation of 2,6-dibromophenol from the marine hemichordate, Balanoglossus biminiensis. Science 155:1558–1559

    Article  Google Scholar 

  • Bandaranayake WM (2006) The nature and role of pigments of marine invertebrates. Nat Prod Rep 23:223–255. https://doi.org/10.1039/b307612c

    Article  CAS  PubMed  Google Scholar 

  • Barsby T, Kicklighter CE, Hay ME, Sullards MC, Kubanek J (2003) Defensive 2-alkylpyrrole sulfamates from the marine annelid Cirriformia tentaculata. J Nat Prod 66:1110–1112. https://doi.org/10.1021/np030149z

    Article  CAS  PubMed  Google Scholar 

  • Bassot JM (1987) A transient intracellular coupling explains the facilitation of responses in the bioluminescent system of scale worms. J Cell Biol 105:2235–2243

    Article  CAS  PubMed  Google Scholar 

  • Bassot JM, Nicolas MT (1995) Bioluminescence in scale-worm photosomes: the photoprotein polynoidin is specific for the detection of superoxide radicals. Histochem Cell Biol 104:199–210

    Article  CAS  PubMed  Google Scholar 

  • Becerro MA, López NI, Turón X, Uriz J (1994) Antimicrobial activity and surface bacterial film in marine sponges. J Exp Mar Biol Ecol 179:195–205

    Article  Google Scholar 

  • Benkendorff K, Davis AR, Bremner JB (2001) Chemical defense in the egg masses of benthic invertebrates: an assessment of antibacterial activity in 39 mollusks and 4 polychaetes. J Invertebr Pathol 78:109–118. https://doi.org/10.1006/jipa.2001.5047

    Article  CAS  PubMed  Google Scholar 

  • Bhosale SH, Jagtap TG, Naik CG (1999) Antifungal activity of some marine organisms from India, against food spoilage Aspergillus strains. Mycopathologia 147:133–138

    Article  CAS  PubMed  Google Scholar 

  • Bianco EM, Rogers R, Teixeira VL, Pereira RC (2009) Antifoulant diterpenes produced by the brown seaweed Canistrocarpus cervicornis. J Appl Phycol 21(3):341–346. https://doi.org/10.1007/s10811-008-9374-9

    Article  CAS  Google Scholar 

  • Bleidorn C, Vogt L, Bartolomaeus T (2003) New insights into polychaete phylogeny (Annelida) inferred from 18S rDNA sequences. Mol Phylogenet Evol 29:279–288

    Article  CAS  PubMed  Google Scholar 

  • Blunden G (1988) Metabolites from marine algae. Prog Oceanogr 21:217–226

    Article  Google Scholar 

  • Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2003) Marine natural products. Nat Prod Rep 20:1–48. https://doi.org/10.1039/b207130b

    Article  CAS  PubMed  Google Scholar 

  • Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2004) Marine natural products. Nat Prod Rep 21:1–49. https://doi.org/10.1039/b305250h

    Article  CAS  PubMed  Google Scholar 

  • Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2005) Marine natural products. Nat Prod Rep 22:15–61. https://doi.org/10.1039/b415080p

    Article  CAS  PubMed  Google Scholar 

  • Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2006) Marine natural products. Nat Prod Rep 23:26–78. https://doi.org/10.1039/b502792f

    Article  CAS  PubMed  Google Scholar 

  • Blunt JW, Copp BR, Hu WP, Munro MHG, Northcote PT, Prinsep MR (2007) Marine natural products. Nat Prod Rep 24:31–86. https://doi.org/10.1039/b603047p

    Article  CAS  PubMed  Google Scholar 

  • Blunt JW, Copp BR, Hu WP, Munro MHG, Northcote PT, Prinsep MR (2008) Marine natural products. Nat Prod Rep 25:35–94. https://doi.org/10.1039/b701534h

    Article  CAS  PubMed  Google Scholar 

  • Blunt JW, Copp BR, Hu WP, Munro MHG, Northcote PT, Prinsep MR (2009) Marine natural products. Nat Prod Rep 26:170–244. https://doi.org/10.1039/b805113p

    Article  CAS  PubMed  Google Scholar 

  • Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2010) Marine natural products. Nat Prod Rep 27:165–237. https://doi.org/10.1039/b906091j

    Article  CAS  PubMed  Google Scholar 

  • Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2011) Marine natural products. Nat Prod Rep 28:196–268. https://doi.org/10.1039/c005001f

    Article  CAS  PubMed  Google Scholar 

  • Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2012) Marine natural products. Nat Prod Rep 29:144–222. https://doi.org/10.1039/c2np00090c

    Article  CAS  PubMed  Google Scholar 

  • Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2013) Marine natural products. Nat Prod Rep 30:237–323. https://doi.org/10.1039/c2np20112g

    Article  CAS  PubMed  Google Scholar 

  • Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2014) Marine natural products. Nat Prod Rep 31:160–258. https://doi.org/10.1039/c3np70117d

    Article  CAS  PubMed  Google Scholar 

  • Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2015) Marine natural products. Nat Prod Rep 32:116–211. https://doi.org/10.1039/c4np00144c

    Article  CAS  PubMed  Google Scholar 

  • Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2016) Marine natural products. Nat Prod Rep 33:382–431. https://doi.org/10.1039/c5np00156k

    Article  CAS  PubMed  Google Scholar 

  • Bolser RC, Hay ME (1996) Are tropical plants better defended? Palatability and defenses of temperate vs. tropical seaweeds. Ecology 77(8):2269–2286

    Article  Google Scholar 

  • Boman HG (1995) Peptide antibiotics and their role in innate immunity. Annu Rev Immunol 13:61–92

    Article  CAS  PubMed  Google Scholar 

  • Bon C, Saliou B, Thieffry M, Manaranch R (1985) Partial purification of α-Glycerotoxin, a presynaptic neurotoxin from the venom glands of the polychaete annelid Glycera convoluta. Neurochem Int 7(1):63–75

    Article  CAS  PubMed  Google Scholar 

  • Branchini BR, Behney CE, Southworth TL, Rawat R, Deheyn DD (2014) Chemical analysis of the luminous slime secreted by the marine worm Chaetopterus (Annelida, Polychaeta). Photochem Photobiol 90:247–251. https://doi.org/10.1111/php.12169

    Article  CAS  PubMed  Google Scholar 

  • Bryan PJ, Rittschof D, McClintock JB (1996) Bioactivity of echinoderm ethanolic body-wall extracts: an assessment of marine bacterial attachment and macroinvertebrate larval settlement. J Exp Mar Biol Ecol 196:79–96

    Article  Google Scholar 

  • Bryan PJ, McClintock JB, Hopkins TS (1997) Structural and chemical defenses of echinoderms from the northern Gulf of Mexico. J Exp Mar Biol Ecol 210:173–186

    Article  CAS  Google Scholar 

  • Burns E, Ifrach I, Carmeli S, Pawlik JR, Ilan M (2003) Comparison of anti-predatory defenses of Red Sea and Caribbean sponges. I. Chemical defense. Mar Ecol Prog Ser 252:105–114

    Article  Google Scholar 

  • Canicattì C, Ville P, Pagliara P, Roch P (1992) Hemolysins from the mucus of Spirographis spalllanzanii (Polychaeta: Sabellidae). Mar Biol 114:453–458

    Article  Google Scholar 

  • Casillas E, Myers MS (1989) Effect of bromobenzene and O-bromophenol on kidney and liver of english sole (Parophrys velutus). Camp. Biochem Physiol 93C(1):4348–1989

    Google Scholar 

  • Chain BM, Anderson RS (1983a) Antibacterial activity of the coelomic fluid from the polychaete, Glycera dibranchiata. II. Partial purification and biochemical characterization of the active factor. Biol Bull 164:41–49

    Article  CAS  Google Scholar 

  • Chain BM, Anderson RS (1983b) A bactericidal and cytotoxic factor in the coelomic fluid of the polychaete, Glycera dibranchiata. Dev Comp Immunol 7:625–628

    Article  Google Scholar 

  • Chen YP, Lincoln DE, Woodin SA, Lovell CR (1991) Purification and properties of a unique flavin-containing chloroperoxidase from the capitellid polychaete Notomastus lobatus. J Biol Chem 266(35):23909–23915

    CAS  PubMed  Google Scholar 

  • Chen YP, Woodin SA, Lincoln DE, Lovell CR (1996) An unusual dehalogenating peroxidase from the marine terebellid polychaete Amphitrite ornata. J Biol Chem 271(9):4609–4612. https://doi.org/10.1074/jbc.271.9.4609

    Article  CAS  PubMed  Google Scholar 

  • Chung HY, Ma WCJ, Ang PO Jr, Kim JS, Chen F (2003) Seasonal variations of bromophenols in brown algae (Padina arborescens, Sargassum siliquastrum, and Lobophora variegata) collected in Hong Kong. J Agric Food Chem 51:2619–2624

    Article  CAS  PubMed  Google Scholar 

  • Clavico EEG, Da Gama BAP, Soares AR, Cassiano KM, Pereira RC (2013) Interaction of chemical and structural components providing defences to sea pansies Renilla reniformis and Renilla muelleri. Mar Biol Res 9(3):285–292. https://doi.org/10.1080/17451000.2012.739693

    Article  Google Scholar 

  • Connaughton VP, Schuur A, Targett NM, Epifanio CE (1994) Chemical suppression of feeding in larval weakfish (Cynoscion regalis) by trochophores of the serpulid polychaete Hydroides dianthus. J Chem Ecol 20(7):1763–1771

    Article  CAS  PubMed  Google Scholar 

  • Cowart JD, Fielman KT, Woodin SA, Lincoln DE (2000) Halogenated metabolites in two polychaetes and their planktotrophic and lecithotrophic larvae. Mar Biol 136:993–1002

    Article  CAS  Google Scholar 

  • Cronin G (2001) Resource allocation in seaweeds and marine invertebrates: chemical defense patterns in relation to defense theories. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC Press, Boca Raton, pp. 325–353

  • Czeczuga B (1971) The coloration of specimens of Nereis zonata Mal. (Annelides, Polychaeta) from the Black Sea. Hydrobiologia 37(2):301–307

    Article  Google Scholar 

  • Dales RP (1962) The nature of the pigments in the crowns of sabellid and serpulid polychaetes. J Mar Biol Assoc UK 42:259–274

    Article  CAS  Google Scholar 

  • Dales RP (1971) Bioluminescence in pelagic polychaetes. J Fish Res Board Can 28(10):1487–1489

  • Dales RP, Kennedy GY (1954) On the diverse colours of Nereis diversicolor. J Mar Biol Assoc UK 33:699–708

    Article  Google Scholar 

  • Davis JM, Viney C (1998) Water-mucin phases: conditions for mucus liquid crystallinity. Thermochim Acta 315:39–49

    Article  Google Scholar 

  • De Nys R, Steinberg PD, Willemsen P, Dworjanyn SA, Gabelish CL, King RJ (1995) Broad spectrum effects of secondary metabolites from the red alga Delisea pulchra in antifouling assays. Biofouling 8:259–271

    Article  Google Scholar 

  • Deheyn DD, Latz MI (2009) Internal and secreted bioluminescence of the marine polychaete Odontosyllis phosphorea (Syllidae). Invertebr Biol 128(1):31–45. https://doi.org/10.1111/j.1744-7410.2008.00149.x

    Article  Google Scholar 

  • Deheyn DD, Enzor LA, Dubowitz A, Urbach JS, Blair D (2013) Optical and physicochemical characterization of the luminous mucous secreted by the marine worm Chaetopterus sp. Physiol Biochem Zool 86(6):702–715. https://doi.org/10.1086/673869

    Article  CAS  PubMed  Google Scholar 

  • Dimarcq JL, Bulet P, Hetru C, Hoffmann J (1998) Cysteine-rich antimicrobial peptides in invertebrates. Biopolymers 47:465–477

    Article  CAS  PubMed  Google Scholar 

  • Dworjanyn AS, De Nys R, Steinberg PD (1999) Localisation and surface quantification of secondary metabolites in the red alga Delisea pulchra. Mar Biol 133:727–736

    Article  CAS  Google Scholar 

  • Dworjanyn AS, De Nys R, Steinberg PD (2006) Chemically mediated antifouling in the red alga Delisea pulchra. Mar Ecol Prog Ser 318:153–163

    Article  CAS  Google Scholar 

  • Eklöf J (2010) Taxonomy and phylogeny of polychaetes. Dissertation, University of Gothenburg

  • Elayaraja S, Murugesan P, Vijayalakshmi S, Balasubramanian T (2010) Antibacterial and antifungal activities of polychaete Perinereis cultrifera. Indian J Geo-Mar Sci 39(2):257–261

    Google Scholar 

  • Emrich R, Weyland H, Weber K (1990) 2,3,4-Tribromopyrrole from the marine polychaete Polyphysia crassa. J Nat Prod 53(3):703–705

    Article  CAS  Google Scholar 

  • Engel S, Pawlik JR (2000) Allelopathic activities of sponge extracts. Mar Ecol Prog Ser 207:273–281

    Article  Google Scholar 

  • Epifanio RA, Maia LF, Fenical W (2000) Chemical defenses of the endemic Brazilian gorgonian Lophogorgia violacea Pallas (Octocorallia, Gorgonacea). J Braz Chem Soc 11(6):584–591

    Article  CAS  Google Scholar 

  • Epifanio RA, Maia LF, Pawlik JR, Fenical W (2007) Antipredatory secosterols from the octocoral Pseudopterogorgia americana. Mar Ecol Prog Ser 329:307–310

    Article  CAS  Google Scholar 

  • Esser F, Winterberg M, Sebesvari Z, Harder T (2008) Effects of halogenated metabolites from infaunal polychaetes on larval settlement of the spionid polychaete Streblospio benedicti. Mar Ecol Prog Ser 355:161–172. https://doi.org/10.3354/meps07226

    Article  CAS  Google Scholar 

  • Fan X, NJ X, Shi JG (2003) Bromophenols from the red alga Rhodomela confervoides. J Nat Prod 66:455–458

    Article  CAS  PubMed  Google Scholar 

  • Fattorini D, Regoli F (2004) Arsenic speciation in tissues of the Mediterranean polychaete Sabella spallanzanii. Environ Toxicol Chem 23:1881–1887

    Article  CAS  PubMed  Google Scholar 

  • Fattorini D, Notti A, Halt MN, Gambi MC, Regoli F (2005) Levels and chemical speciation of arsenic in polychaetes: A review. Mar Ecol 26:255–264. https://doi.org/10.1111/j.1439-0485.2005.00057.x

    Article  CAS  Google Scholar 

  • Fattorini D, Notti A, Nigro M, Regoli F (2010) Hyperaccumulation of vanadium in the Antarctic polychaete Perkinsiana littoralis as a natural chemical defense against predation. Environ Sci Pollut Res 17:220–228. https://doi.org/10.1007/s11356-009-0243-0

    Article  CAS  Google Scholar 

  • Fauchald K (1977) The polychaete worms – definitions and keys to the orders, families and genera. Natural History Museum of Los Angeles County, Los Angeles

  • Faulkner D J (1977) Interesting aspects of marine natural products chemistry. Tetrahedron 33(12):1421–1443

  • Faulkner DJ (1984) Marine natural products: Metabolites of marine invertebrates. Nat Prod Rep 1:551–598

    Article  CAS  Google Scholar 

  • Faulkner DJ (1986) Marine natural products. Nat Prod Rep 3:1–33

    Article  CAS  PubMed  Google Scholar 

  • Faulkner DJ (1987) Marine natural products. Nat Prod Rep 4:539–576

    Article  CAS  PubMed  Google Scholar 

  • Faulkner DJ (1988) Marine natural products. Nat Prod Rep 5:613–663

    Article  CAS  PubMed  Google Scholar 

  • Faulkner DJ (1990) Marine natural products. Nat Prod Rep 7:269–309

    Article  CAS  PubMed  Google Scholar 

  • Faulkner DJ (1991) Marine natural products. Nat Prod Rep 8:97–147

    Article  CAS  PubMed  Google Scholar 

  • Faulkner DJ (1992) Marine natural products. Nat Prod Rep 9:323–364

    Article  CAS  Google Scholar 

  • Faulkner DJ (1993) Marine natural products. Nat Prod Rep 10:497–539

    Article  CAS  PubMed  Google Scholar 

  • Faulkner DJ (1994) Marine natural products. Nat Prod Rep 1:355–394

    Article  Google Scholar 

  • Faulkner DJ (1995) Marine natural products. Nat Prod Rep 12:223–269

    Article  CAS  Google Scholar 

  • Faulkner DJ (1996) Marine natural products. Nat Prod Rep 13:75–125

    Article  CAS  PubMed  Google Scholar 

  • Faulkner DJ (1997) Marine natural products. Nat Prod Rep 14:259–302

    Article  CAS  Google Scholar 

  • Faulkner DJ (1998) Marine natural products. Nat Prod Rep 15:113–158

    Article  CAS  PubMed  Google Scholar 

  • Faulkner DJ (1999) Marine natural products. Nat Prod Rep 16:155–198

    Article  Google Scholar 

  • Faulkner DJ (2000a) Marine natural products. Nat Prod Rep 17:7–55

    Article  CAS  PubMed  Google Scholar 

  • Faulkner DJ (2000b) Marine Pharmacology. Antonie Van Leeuwenhoek 77:135–145

    Article  CAS  PubMed  Google Scholar 

  • Faulkner DJ (2000c) Highlights of marine natural products chemistry (1972-1999). Nat Prod Rep 17:1–6

  • Faulkner DJ (2001) Marine natural products. Nat Prod Rep 18:1–49

    Article  CAS  PubMed  Google Scholar 

  • Faulkner DJ (2002) Marine natural products. Nat Prod Rep 19:1–48

    CAS  PubMed  Google Scholar 

  • Fielman KT, Targett NM (1995) Variation of 2,3,4-tribromopyrrole and its sodium sulfamate salt in the hemichordate Saccoglossus kowalevskii. Mar Ecol Prog Ser 116:125–136

    Article  CAS  Google Scholar 

  • Fielman KT, Woodin SA, Walla MD, Lincoln DE (1999) Widespread occurrence of natural halogenated organics among temperate marine infauna. Mar Ecol Prog Ser 181:1–12

    Article  CAS  Google Scholar 

  • Fielman KT, Woodin SA, Lincoln DE (2001) Polychaete indicator species as a source of natural halogenated organic compounds in marine sediments. Environ Toxicol Chem 20(4):738–747

    Article  CAS  PubMed  Google Scholar 

  • Fischer A, Fischer U (1995) On the life-style and life-cycle of the luminescent polychaete Odontosyllis enopla (Annelida, Polychaeta). Invertebr Biol 114:236–247

    Article  Google Scholar 

  • Francis WR, Powers ML, Haddock SHD (2014) Characterization of an anthraquinone fluor from the bioluminescent, pelagic polychaete Tomopteris. Lumin J Biol Chem Lumin 29:1135–1140

    Article  CAS  Google Scholar 

  • Gaion A, Sartori D, Scuderi A, Fattorini D (2014) Bioaccumulation and biotransformation of arsenic compounds in Hediste diversicolor (Muller 1776) after exposure to spiked sediments. Environ Sci Pollut Res 21:5952–5959

    Article  CAS  Google Scholar 

  • Garson MJ (2001) Ecological perspectives on marine natural product biosynthesis. In: McClintock B, Baker BJ (eds) Marine chemical ecology, CRC Press LLC, pp 71–114

  • Gaston GR, Hall J (2000) Lunar periodicity and bioluminescence of swarming Odontosyllis luminosa (Polychaeta: Syllidae) in Belize. Gulf Caribb Res 12:47–51

    Article  Google Scholar 

  • Gaston GR, Slattery M (2002) Ecological function of chemical deterrents in a tropical polychaete, Eupolymnia crassicornis (Annelida, Terebellidae), in Belize. Bull Mar Sci 70(3):891–897

    Google Scholar 

  • Geiszinger AE, Goessler W, Francesconi KA (2002a) Biotransformation of arsenate to the tetramethylarsonium ion in the marine polychaetes Nereis diversicolor and Nereis virens. Environ Sci Technol 36:2905–2910

    Article  CAS  PubMed  Google Scholar 

  • Geiszinger AE, Goessler W, Francesconi KA (2002b) The marine polychaete Arenicola marina: its unusual arsenic compound pattern and its uptake of arsenate from seawater. Mar Environ Res 53:37–50

    Article  CAS  PubMed  Google Scholar 

  • Gerhart DJ, Rittschof D, Mayo SW (1988) Chemical ecology and the search for marine antifoulants- studies of a predator-prey symbiosis. J Chem Ecol 14(10):1905–1916

    Article  CAS  PubMed  Google Scholar 

  • Giangrande A, Licciano M, Pagliara P, Gambi MC (2000) Gametogenesis and larval development in Sabella spallanzanii (Polychaeta: Sabellidae) from the Mediterranean Sea. Mar Biol 136:847–861

    Article  Google Scholar 

  • Giangrande A, Cavallo A, Licciano M, Mola E, Pierri C, Trianni L (2005) Utilization of the filter feeder polychaete Sabella spallanzanii Gmelin (Sabellidae) as bioremediator in aquaculture. Aquac Int 13:129–136

    Article  Google Scholar 

  • Giangrande A, Licciano M, Schirosi R, Musco L, Stabili L (2014) Chemical and structural defensive external strategies in six sabellid worms (Annelida). Mar Ecol 35:36–45

    Article  Google Scholar 

  • Giangrande A, Licciano M, Pasqua M, Fanizzi FP, Migoni D, Stabili L (2016) Heavy metals in five Sabellidae species (Annelida, Polychaeta): ecological implications. Environ Sci Pollut Res 24:3759–3768. https://doi.org/10.1007/s11356-016-8089-8

    Article  Google Scholar 

  • Gibbs PE, Langston WJ, Burt GR, Pascoe PL (1983) Tharyx marioni (Polychaeta): a remarkable accumulator of arsenic. J Mar Biol Assoc UK 63:313–325

    Article  CAS  Google Scholar 

  • Giray C, King GM (1997) Predator deterrence and 2,4-dibromophenol conservation by the enteropneusts Saccoglossus bromophenolosus and Protoglossus graveolens. Mar Ecol Prog Ser 159:229–238

    Article  CAS  Google Scholar 

  • Goerke H, Weber K (1990) Locality-dependent concentrations of bromophenols in Lanice conchilega (Polychaeta: Terebellidae). Comp Biochem Physiol B 97(4):741–744

    Article  Google Scholar 

  • Goerke H, Weber K (1991) Bromophenols in Lanice conchilega (Polychaeta, Terebellidae): the influence of sex, weight and season. Bull Mar Sci 48(2):517–523

    Google Scholar 

  • Goerke H, Emrich R, Weber K, Duchêne JC (1991) Concentrations and localization of brominated metabolites in the genus Thelepus (Polychaeta: Terebellidae). Comp Biochem Physiol B 99(1):203–206

    Article  Google Scholar 

  • Gouveneaux A, Mallefet J (2013) Physiological control of bioluminescence in a deep-sea planktonic worm, Tomopteris helgolandica. J Exp Biol 216:4285–4289

    Article  PubMed  CAS  Google Scholar 

  • Haddock SHD, Moline MA, Case JF (2010) Bioluminescence in the sea. Annu Rev Mar Sci 2:443–493

    Article  Google Scholar 

  • Hardege JD, Bentley MG, Snape L (1998) Sediment selection by juvenile Arenicola marina. Mar Ecol Prog Ser 166:187–195

    Article  Google Scholar 

  • Hay ME (1984) Predictable spatial escapes from herbivory: How do these affect the evolution of herbivore resistance in tropical marine communities? Oecologia 64:396–407

    Article  PubMed  Google Scholar 

  • Hay ME (1996) Marine chemical ecology: What’s known and what’s next? J Exp Mar Biol Ecol 200:103–134

    Article  CAS  Google Scholar 

  • Hay ME (1997) The ecology and evolution of seaweed-herbivore interactions on coral reefs. Coral Reefs 16(Suppl 1):67–76

  • Hay ME (2009) Marine chemical ecology: chemical signals and cues structure marine populations, communities, and ecosystems. Annu Rev Mar Sci 1:193–212

    Article  Google Scholar 

  • Hay ME (2011) Crustaceans as powerful models in aquatic chemical ecology. In: Breithaupt T, Thiel M (eds) Chemical communication in crustaceans, 1st edn. Springer-Verlag, New York, pp 41–62. https://doi.org/10.1007/978-0-387-77101-4_3

    Google Scholar 

  • Hay ME, Fenical W (1988) Marine plant-herbivore interactions: The ecology of chemical defense. Annu Rev Ecol Syst 19:111–145

    Article  Google Scholar 

  • Hay ME, Fenical W (1996) Chemical ecology and marine biodiversity: insights and products from the sea. Oceanography 9(1):10–20

    Article  Google Scholar 

  • Hay ME, Duffy E, Pfister CA, Fenical W (1987) Chemical defense against different marine herbivores: Are amphipods insect equivalents? Ecology 68(6):1567–1580

    Article  CAS  PubMed  Google Scholar 

  • Herrera AA (1979) Electrophysiology of bioluminescent excitable epithelial cells in a polynoid polychaete worm. J Comp Physiol A 129:67–78

    Article  CAS  Google Scholar 

  • Higa T, Scheuer PJ (1974) Thelepin, a new metabolite from the marine annelid Thelepus setosus. J Amer Chem Soc 96(7):2246–2248

    Article  CAS  Google Scholar 

  • Higa T, Scheuer PJ (1975) Constituents of the marine annelid Thelepus setosus. Tetrahedron 31:2379–2381

    Article  CAS  Google Scholar 

  • Higa T, Fujiyama T, Scheuer PJ (1980) Halogenated phenol and indole constituents of acorn worms. Comp Biochem Physiol 65B:525–530

    CAS  Google Scholar 

  • Hill RA (2003) Marine natural products. Annu Rep Prog Chem Sect B 99:183–207

    Article  CAS  Google Scholar 

  • Hill RA (2004) Marine natural products. Annu Rep Prog Chem Sect B 100:169–189

    Article  CAS  Google Scholar 

  • Hill RA (2005) Marine natural products. Annu Rep Prog Chem Sect B 101:124–136

    Article  CAS  Google Scholar 

  • Hill RA (2006) Marine natural products. Annu Rep Prog Chem Sect B 102:123–137

    Article  CAS  Google Scholar 

  • Hill RA (2007) Marine natural products. Annu Rep Prog Chem Sect B 103:125–139

    Article  CAS  Google Scholar 

  • Hill RA (2008) Marine natural products. Annu Rep Prog Chem Sect B 104:127–141

    Article  CAS  Google Scholar 

  • Hill RA (2009) Marine natural products. Annu Rep Prog Chem Sect B 105:150–166

    Article  CAS  Google Scholar 

  • Hill RA (2010) Marine natural products. Annu Rep Prog Chem Sect B 106:156–173

    Article  CAS  Google Scholar 

  • Hill RA (2011) Marine natural products. Annu Rep Prog Chem Sect B107:138–156

    Article  CAS  Google Scholar 

  • Hill RA (2012) Marine natural products. Annu Rep Prog Chem Sect B Org Chem 108:131–146

    Article  CAS  Google Scholar 

  • Hill RA (2013) Marine natural products. Annu Rep Prog Chem Sect B Org Chem 109:146–166

    Article  CAS  Google Scholar 

  • Hu Y, Chen J, Hu G, Yu J, Zhu X, Lin Y, Chen S, Yuan J (2015) Statistical research on the bioactivity of new marine natural products discovered during the 28 years from 1985 to 2012. Mar Drugs 13(1):202–221

    Article  PubMed  PubMed Central  Google Scholar 

  • Huber ME, Arneson CA, Widder EA (1989) Extremely blue bioluminescence in the polychaete Polycirrus perplexus (Terebellidae). Bull Mar Sci 44:1236–1239

    Google Scholar 

  • Ianora A, Boersma M, Casotti R, Fontana A, Harder J, Hoffmann F, Pavia H, Potin P, Poulet SA, Toth G (2006) The H. T. Oodum synthesis essay: new trends in marine chemical ecology. Estuar Coasts 29(4):531–551

    Article  CAS  Google Scholar 

  • Inoue S, Okada K, Tanino H, Kakoi H, Horii N (1990) 6-Propionyllumazines from the marine polychaete, Odontosyllis undecimdonta. Chem Lett 19(3):367–368

    Article  Google Scholar 

  • Inoue S, Okada K, Tanino H, Kakoi H, Ohnishi Y, Horii N (1991) New lumazines from the marine polychaete, Odontosyllis undecimdonta. Chem Lett 20:563–564

    Article  Google Scholar 

  • Inoue S, Okada K, Tanino H, Kakoi H (1993) A new hexagonal cyclic enol phosphate of 6-β-hydroxypropionyllumazines from the marine swimming polychaete, Odontosyllis undecimdonta. Heterocycles 35(1):147–150

    Article  CAS  Google Scholar 

  • Iori D, Forti L, Massamba-N’Siala G, Prevedelli D, Simonini R (2014) Toxicity of the purple mucus of the polychaete Halla parthenopeia (Oenonidae) revealed by a battery of ecotoxicological bioassays. Sci Mar 78(4):589–595

    Article  Google Scholar 

  • Ishii T, Otake T, Okoshi K, NakaharaM NR (1994) Intracellular localization of vanadium in the fan worm Pseudopotamilla occelata. Mar Biol 121:143–151

    Article  CAS  Google Scholar 

  • Israel M, Lesbats B (1981) Chemiluminescent determination of acetylcholine and continuous detection of its release from torpedo eletric organ synapses and synaptosomes. Neurochem Int 3(1):81–90

    Article  CAS  PubMed  Google Scholar 

  • Jensen PR, Fenical W (1994) Strategies for the discovery of secondary metabolites from marine bacteria: ecological perspectives. Annu Rev Microbiol 48:559–584

    Article  CAS  PubMed  Google Scholar 

  • Jensen PR, Fenical W (1996) Marine bacterial diversity as a resource for novel microbial products. J Ind Microbiol 17:346–351

    Article  CAS  Google Scholar 

  • Jumars PA, Dorgan KM, Lindsay SM (2015) Diet of worms emended: an update of polychaete feeding guilds. Annu Rev Mar Sci 7:497–520

    Article  Google Scholar 

  • Kakoi H, Tanino H, Okada K, Inoue S (1995) 6-Acyllumazines from the marine polychaete, Odontosyllis undecimdonta. Heterocycles 41(4):789–797

    Article  CAS  Google Scholar 

  • Kamanos KAD, Withey JM (2012) Enantioselective total synthesis of (R)-(−)-complanine. Beilstein J Org Chem 8:1695–1699. https://doi.org/10.3762/bjoc.8.192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy GY, Nicol JAC (1959) Pigments of Chaetopterus variopedatus (Polychaeta). Proc R Soc Lond B Biol Sci 150(941):509–538

    Article  CAS  PubMed  Google Scholar 

  • Kicklighter CE, Hay ME (2006) Integrating prey defensive traits: contrasts of marine worms from temperate and tropical habitats. Ecol Monogr 76(2):195–215

    Article  Google Scholar 

  • Kicklighter CE, Hay ME (2007) To avoid or deter: interactions among defensive and escape strategies in sabellid worms. Oecologia 151:161–173. https://doi.org/10.1007/s00442-006-0567-0

    Article  PubMed  Google Scholar 

  • Kicklighter CE, Kubanek J, Barsby T, Hay ME (2003) Palatability and defense of some tropical infaunal worms: alkylpyrrole sulfamates as deterrents to fish feeding. Mar Ecol Prog Ser 263:299–306

    Article  Google Scholar 

  • Kicklighter CE, Fisher CR, Hay ME (2004a) Chemical defense of hydrothermal vent and hydrocarbon seep organisms: A preliminary assessment using shallow-water consumers. Mar Ecol Prog Ser 275:11–19

    Article  CAS  Google Scholar 

  • Kicklighter CE, Kubanek J, Hay ME (2004b) Do brominated natural products defend marine worms from consumers? Some do, most don’t. Limnol Oceanogr 49(2):430–441

    Article  CAS  Google Scholar 

  • King GM (1986) Inhibition of microbial activity in marine sediments by a bromophenol from a hemichordate. Nature 323:257–259

    Article  CAS  Google Scholar 

  • King GM (1988) Dehalogenation in marine sediments containing natural sources of halophenols. Appl Environ Microbol 54(12):3079–3085

    CAS  Google Scholar 

  • Kubanek J, Whalen KE, Engel S, Kelly SR, Henkel TP, Fenical W, Pawlik JR (2002) Multiple defensive roles for triterpene glycosides from two Caribbean sponges. Oecologia 131:125–136. https://doi.org/10.1007/s00442-001-0853-9

    Article  PubMed  Google Scholar 

  • Kubanek J, Jensen PR, Keifer PA, Sullards MC, Collins DO, Fenical W (2003) Seaweed resistance to microbial attack: A targeted chemical defense against marine fungi. Proc Natl Acad Sci USA 100(12):6916–6921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudenov JD (1995) Family Amphinomidae Lamarck 1818. In: Blake JA, Hilbig B, Scott PH (eds) Taxonomic atlas of the benthic fauna of the Santa Maria Basin and Western Santa Barbara Channel, Volume 5. The Annelida part 2–Polychaeta: Phyllodocida (Syllidae and Scale bearing families), Amphinomida and Eunicida. Santa Barbara Museum of Natural History, Santa Barbara, California, pp 207–215

    Google Scholar 

  • Kuffner IB, Paul VJ (2004) Effects of the benthic cyanobacterium Lyngbya majuscula on larval recruitment of the reef corals Acropora surculosa and Pocillopora damicornis. Coral Reefs 23:455–458

    Article  Google Scholar 

  • Kurata K, Taniguchii K, Takashima K, Hayashi I, Suzuki M (1997) Feeding-deterrent bromophenols from Odonthalia corymbifera. Phytochemistry 45(3):485–4487

    Article  CAS  Google Scholar 

  • Kurisaki E, Kato N, Ishida T, Matsumoto A, Shinohara K, Hiraiwa K (2010) Fatal human poisoning with Padan TM: A cartap-containing pesticide. Clin Toxicol 48:153–155. https://doi.org/10.3109/15563650903505166

    Article  CAS  Google Scholar 

  • Lane AL, Moore BS (2011) A sea of biosynthesis: marine natural products meet the molecular age. Nat Prod Rep 28:411–428. https://doi.org/10.1039/c0np90032j

    Article  CAS  PubMed  Google Scholar 

  • Lane AL, Nyadonga L, Galhenaa AS, Shearerb TL, Stouta EP, Parryc RM, Kwasnika M, Wangc MD, Hayb ME, Fernandeza FM, Kubanek J (2009) Desorption electrospray ionization mass spectrometry reveals surface-mediated antifungal chemical defense of a tropical seaweed. Proc Natl Acad Sci USA 106(18):7314–7319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latz MI, Frank TM, Case JF (1988) Spectral composition of bioluminescence of epipelagic organisms from the Sargasso Sea. Mar Biol 98:441–446

    Article  Google Scholar 

  • Leal MC, Puga J, Serôdio J, Gomes NCM, Calado R (2012) Trends in the discovery of new marine natural products from invertebrates over the last two decades – Where and what are we bioprospecting? PLoS ONE 7(1):e30580. https://doi.org/10.1371/journal.pone.0030580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebar MD, Heimbegner JL, Baker BJ (2007) Cold-water marine natural products. Nat Prod Rep 24:774–797. https://doi.org/10.1039/b516240h

    Article  CAS  PubMed  Google Scholar 

  • Li JY, Endo H, Agatsuma Y, Taniguchi K (2011) Inhibition of larval survival and metamorphosis of the sea urchin Strongylocentrotus intermedius by 2,4-dibromophenol and 2,4,6-tribromophenol. Aquac Sci 59(2):247–253

    CAS  Google Scholar 

  • Licciano M, Stabili L, Giangrande A (2005) Clearance rates of Sabella spallanzanii and Branchiomma luctuosum (Annelida: Polychaeta) on a pure culture of Vibrio alginolyticus. Water Res 39:4375–4384. https://doi.org/10.1016/j.watres.2005.09.003

    Article  CAS  PubMed  Google Scholar 

  • Licciano M, Stabili L, Giangrande A, Cavallo RA (2007) Bacterial accumulation by Branchiomma luctuosum (Annelida: Polychaeta): a tool for biomonitoring marine systems and restoring polluted waters. Mar Environ Res 63:291–302. https://doi.org/10.1016/j.marenvres.2006.11.003

    Article  CAS  PubMed  Google Scholar 

  • Lichtenegger HC, Schöberl T, Bartl MH, Waite H, Stucky GD (2003) High abrasion resistance with sparse mineralization: copper biomineral in worm jaws. Science 298:389–392. https://doi.org/10.1073/pnas.1632658100

    Article  CAS  Google Scholar 

  • Lincoln DE, Fielman KT, Marinelli RL, Woodin SA (2005) Bromophenol accumulation and sediment contamination by the marine annelids Notomastus lobatus and Thelepus crispus. Biochem Syst Ecol 33:559–570. https://doi.org/10.1016/j.bse.2004.12.006

    Article  CAS  Google Scholar 

  • Lindquist N (2002) Chemical defense of early life stages of benthic marine invertebrates. J Chem Ecol 28(10):1987–2000

    Article  CAS  PubMed  Google Scholar 

  • Lindquist N, Hay ME (1996) Palatability and chemical defense of marine invertebrate larvae. Ecol Monogr 66(4):431–450

    Article  Google Scholar 

  • Lovell CR, Steward CC, Phillips T (1999) Activity of marine sediment bacterial communities exposed to 4-bromophenol, a polychaete secondary metabolite. Mar Ecol Prog Ser 179:241–246

    Article  CAS  Google Scholar 

  • Lumbang WA, Paul VJ (1996) Chemical defenses of the tropical green seaweed Neomeris anndata Dickie: effects of multiple compounds on feeding by herbivores. J Exp Mar Biol Ecol 201:185–195

    Article  CAS  Google Scholar 

  • Mahon AR, Amsler CD, McClintock JB, Amsler MO, Baker BJ (2003) Tissue-specific palatability and chemical defenses against macropredators and pathogens in the common articulate brachiopod Liothyrella uva from the Antarctic Peninsula. J Exp Mar Biol Ecol 290:197–210. https://doi.org/10.1016/S0022-0981(03)00075-3

    Article  CAS  Google Scholar 

  • Maltseva AL, Kotenko ON, Kokryakov VN, Starunov VV, Krasnodembskaya AD (2014) Expression pattern of arenicins—the antimicrobial peptides of polychaete Arenicola marina. Front Physiol 5(497):1–11. https://doi.org/10.3389/fphys.2014.00497

    Google Scholar 

  • Manaranche R, Thieffry M, Israel M (1980) Effect of the venom of Glycera convoluta on the spontaneous quantal release of transmitter. J Cell Biol 85:446–458

    Article  CAS  PubMed  Google Scholar 

  • Marcano L, Nusetti O, Rodriguez-Grau J, Briceno J, Vilas J (1997) Coelomic fluid lysozyme activity induction in the polychaete Eurythoe complanata as a biomarker of heavy metal toxicity. Bull Environ Contam Toxicol 59:22–28

    Article  CAS  PubMed  Google Scholar 

  • Martin M, Anctil M (1984) Luminescence control in the tubeworm Chaetopterus variopedatus: role of the nerve cord and photogenic gland. Biol Bull 166:583–593

    Article  Google Scholar 

  • Martin D, Uriz MJ (1993) Chemical bioactivity of Mediterranean benthic organisms against embryos and larvae of marine invertebrates. J Exp Mar Biol Ecol 173:11–27

    Article  CAS  Google Scholar 

  • Martin D, Le Nourichel C, Uriz MJ, Bhaud M, Duchêne JC (2000) Ontogenic shifts in chemical defenses of the northwest Mediterranean Sea Eupolymnia nebulosa (Polychaeta, Terebellidae). Bull Mar Sci 67(1):287–298

    Google Scholar 

  • Mastrodonato M, Lepore E, Gherardi M, Zizza S, Sciscioli M, Ferri D (2005) Histochemical and ultrastructural analysis of the epidermal gland cells of Branchiomma luctuosum (Polychaeta, Sabellidae). Invertebr Biol 124(4):303–309. https://doi.org/10.1111/j.1744-7410.2005.00028.x

    Article  Google Scholar 

  • Mastrodonato M, Gherardi M, Todisco G, Sciscioli M, Lepore E (2006) The epidermis of Timarete filigera (Polychaeta, Cirratulidae): histochemical and ultrastructural analysis of the gland cells. Tissue Cell 38:279–284. https://doi.org/10.1016/j.tice.2006.06.003

    Article  CAS  PubMed  Google Scholar 

  • McClintock JB, Baker BJ (1997) A review of the chemical ecology of antartic marine invertebrates. Am Zool 37:329–342

    Article  CAS  Google Scholar 

  • Meredith TL, Cowart JD, Henkel TP, Pawlik JR (2007) The polychaete Cirriformia punctata is chemically defended against generalist coral reef predators. J Exp Mar Biol Ecol 353:198–202. https://doi.org/10.1016/j.jembe.2007.08.023

    Article  Google Scholar 

  • Meunier FA, Feng ZP, Molgó J, Zamponi GW, Schiavo G (2002) Glycerotoxin from Glycera convoluta stimulates neurosecretion by up-regulating N-type Ca2+ channel activity. EMBO J 21(24):6733–6743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meunier FA, Nguyen TH, Colasante C, Luo F, Sullivan RKP, Lavidis NA, Molgó J, Meriney SD, Schiavo G (2010) Sustained synaptic-vesicle recycling by bulk endocytosis contributes to the maintenance of high-rate neurotransmitter release stimulated by glycerotoxin. J Cell Sci 123(7):1131–1140. https://doi.org/10.1242/jcs.049296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michel C, Keil B (1975) Biologically active proteins in venomous glands of polychaetous annelid, Glycera convoluta Keferstein. Comp Biochem Physiol 50:29–32

    CAS  Google Scholar 

  • Miron MJ, La Rivière L, Bassot JM, Anctil M (1987) Immunohistochemical and radioautographic evidence of monoamine-containing cells in bioluminescent elytra of the scale-worm Harmothoe imbricata (Polychaeta). Cell Tissue Res 249:547–556

    Article  Google Scholar 

  • Molinski TF, Dalisay DS, Lievens SL, Saludes JP (2009) Drug development from marine natural products. Nat Rev 8:69–85. https://doi.org/10.1038/nrd2487

    CAS  Google Scholar 

  • Morel N, Thieffry M, Manaranche R (1983) Binding of Glycera convoluta neurotoxin to cholinergic nerve terminal plasma membranes. J Cell Biol 97:1737–1744

    Article  CAS  PubMed  Google Scholar 

  • Mouneyrac C, Mastain O, Amiard JC, Amiard-Triquet C, Beaunier P, Jeantet AY, Smith BD, Rainbow PS (2003) Trace-metal detoxification and tolerance of the estuarine worm Hediste diversicolor chronically exposed in their environment. Mar Biol 143:731–744. https://doi.org/10.1007/s00227-003-1124-6

    Article  CAS  Google Scholar 

  • Nagawa Y, Saji Y, Chiba S, Yui T (1971) Neuromuscular blocking actions of Nereistoxin and its derivatives and antagonism by sulfhydryl compounds. Jpn J Pharmacol 21:185–197

    Article  CAS  PubMed  Google Scholar 

  • Nakamura K, Tachikawa Y, Kitamura M, Ohno O, Suganuma M, Uemura D (2008) Complanine, an inflammation-inducing substance isolated from the marine fireworm Eurythoe complanata. Org Biomol Chem 6:2058–2060. https://doi.org/10.1039/b803107j

    Article  CAS  PubMed  Google Scholar 

  • Nakamura K, Tachikawa Y, Uemura D (2009) (−)-Complanine, an inflammatory substance of marine fireworm: a synthetic study. Beilstein J Org Chem 5(12):1–4. https://doi.org/10.3762/bjoc.5.12

    CAS  Google Scholar 

  • Nakamura K, Tachikawa Y, Ohno O, Kitamura M, Suganuma M, Uemura D (2010) Neocomplanines A and B, a Complanine family isolated from the marine fireworm. J Nat Prod 73:303–305. https://doi.org/10.1021/np900694j

    Article  CAS  PubMed  Google Scholar 

  • Namera A, Watanabe T, Yashiki M, Kojima T (1999) Simple and sensitive analysis of Nereistoxin and its metabolites in human serum using headspace solid-phase microextraction and gas chromatography–mass spectrometry. J Chromatogr Sci 37:77–82

    Article  CAS  PubMed  Google Scholar 

  • Nicol JAC (1952a) Studies on Chaetopterus variopedatus (Renier). I. The light-producing glands. J Mar Biol Assoc XXX:417–431

    Article  Google Scholar 

  • Nicol JAC (1952b) Studies on Chaetopterus variopedatus (Renier). II. Nervous control of light production. J Mar Biol Assoc XXX:433–452

    Article  Google Scholar 

  • Nicol JAC (1957) Luminescence in polynoids. III Propagation of excitation through the nerve cord. J Mar Biol Assoc UK 36:271–273

    Article  Google Scholar 

  • Nitta S (1934) Uber Nereistoxin, einen giftigen Bestandteil von Lumbriconereis heteropoda Marenz (Eunicidae). Yakugaku Zasshi 54:648–652 

  • Notti A, Fattorini D, Razzetti EM, Regoli F (2007) Bioaccumulation and biotransformation of arsenic in the Mediterranean Polychaete Sabella spallanzanii: experimental observations. Environ Toxicol Chem 26(6):1186–1191

    Article  CAS  PubMed  Google Scholar 

  • Nygren A, Norlinder E, Panova M, Pleijel F (2011) Colour polymorphism in the polychaete Harmothoe imbricata (Linnaeus, 1767). Mar Biol Res 7(1):54–62. https://doi.org/10.1080/17451001003713555

    Article  Google Scholar 

  • Nylund GM, Pavia H (2005) Chemical versus mechanical inhibition of fouling in the red alga Dilsea carnosa. Mar Ecol Prog Ser 299:111–121

    Article  Google Scholar 

  • Nylund GM, Gribben PE, De Nys R, Steinberg PD, Pavia H (2007) Surface chemistry versus whole-cell extracts: antifouling tests with seaweed metabolites. Mar Ecol Prog Ser 329:73–84

    Article  Google Scholar 

  • Osborn KJ, Haddock SHD, Pleijel F, Madin LP, Rouse GW (2009) Deep-sea, swimming worms with luminescent “Bombs”. Science 325(5943):964. https://doi.org/10.1126/science.1172488

    Article  CAS  PubMed  Google Scholar 

  • Ovchinnikova TV, Aleshina GM, Balandin SV, Krasnosdembskaya AD, Markelov ML, Frolova EI, Leonova YF, Tagaev AA, Krasnodembsky EG, Kokryakov VN (2004) Purification and primary structure of two isoforms of arenicin, a novel antimicrobial peptide from marine polychaeta Arenicola marina. FEBS Lett 577:209–214. https://doi.org/10.1016/j.febslet.2004.10.012

    Article  CAS  PubMed  Google Scholar 

  • Pan W, Liu X, Ge F, Han J, Zheng T (2004) Perinerin, a novel antimicrobial peptide purified from the clamworm Perinereis aibuhitensis Grube and its partial characterization. J Biochem 135:297–304. https://doi.org/10.1093/jb/mvh036

    Article  CAS  PubMed  Google Scholar 

  • Pardo EV, Amaral ACZ (2004) Feeding behavior of the cirratulid Cirriformia filigera (Delle Chiaje, 1825) (Annelida: Polychaeta). Braz J Biol 64(2):283–288

    Article  CAS  PubMed  Google Scholar 

  • Park Y, Choe S, Lee H, Jo J, Park Y, Kim E, Pyo J, Jung JH (2015) Advanced analytical method of Nereistoxin using mixed-mode cationic exchange solid-phase extraction and GC/MS. Forensic Sci Int 252:143–149. https://doi.org/10.1016/j.forsciint.2015.04.010

    Article  CAS  PubMed  Google Scholar 

  • Paul VJ, Fenical W (1986) Chemical defense in tropical green algae, order Caulerpales. Mar Ecol Prog Ser 34:157–169

    Article  CAS  Google Scholar 

  • Paul VJ, Puglisi MP (2004) Chemical mediation of interactions among marine organisms. Nat Prod Rep 21:189–209. https://doi.org/10.1039/b302334f

    Article  CAS  PubMed  Google Scholar 

  • Paul VJ, Ritson-Williams R (2008) Marine chemical ecology. Nat Prod Rep 25:662–695. https://doi.org/10.1039/b702742g

    Article  CAS  PubMed  Google Scholar 

  • Paul VJ, Van Alstyne KL (1988) Chemical defense and chemical variationin some tropical Pacific species of Halimeda (Halimedaceae: Chlorophyta). Coral Reefs 6:263–269

    Article  CAS  Google Scholar 

  • Paul VJ, Lindquist N, Fenical W (1990) Chemical defenses of the tropical ascidian Atapozoa sp. and its nudibranch predators Nembrotha spp. Mar Ecol Prog Ser 59:109–118

    Article  CAS  Google Scholar 

  • Paul VJ, Puglisi MP, Ritson-Williams R (2006) Marine chemical ecology. Nat Prod Rep 23:153–180. https://doi.org/10.1039/b404735b

    Article  CAS  PubMed  Google Scholar 

  • Paul VJ, Ritson-Williams R, Sharp K (2011) Marine chemical ecology in benthic environments. Nat Prod Rep 28:345–387. https://doi.org/10.1039/c0np00040j

    Article  CAS  PubMed  Google Scholar 

  • Pavia H, Toth GB, Lindgren A, Aberg P (2003) Intraspecific variation in the phlorotannin content of the brown alga Ascophyllum nodosum. Phycologia 42(4):378–383

    Article  Google Scholar 

  • Pawlik JR (1993) Marine invertebrate chemical defenses. Chem Rev 93(5):1911–1922

    Article  CAS  Google Scholar 

  • Pawlik JR (2012) Antipredatory defensive roles of natural products from marine invertebrates. In: Fattorusso E, Gerwick WH, Taglilatela-Scarfati O (eds) Handbook of marine natural products, 1st edn. Springer, Netherlands, pp 677–710. https://doi.org/10.1007/978-90-481-3834-0_12

    Chapter  Google Scholar 

  • Pawlik JR, Chanas B, Toonen RJ, Fenical W (1995) Defenses of Caribbean sponges against predatory reef fish. I. Chemical deterrency. Mar Ecol Prog Ser 127:183–194

    Article  CAS  Google Scholar 

  • Pennings SC, Siska EL, Bertness MD (2001) Latitudinal differences in plant palatability in Atlantic coast salt marshes. Ecology 82(5):1344–1359

    Article  Google Scholar 

  • Pennings SC, Ho CK, Salgado CS, Wieski K, Davé N, Kunza AE, Wason EL (2009) Latitudinal variation in herbivore pressurein Atlantic Coast salt marshes. Ecology 90(1):183–195

    Article  PubMed  Google Scholar 

  • Pereira RC, Da Gama BAP, Teixeira VL, Yoneshigue-Valentin Y (2003) Ecological roles of natural products of the Brazilian red seaweed Laurencia obtusa. Braz J Biol 63(4):665–672

    Article  CAS  PubMed  Google Scholar 

  • Pereira DM, Valentão P, Andrade PB (2014) Marine natural pigments: chemistry, distribution and analysis. Dyes Pigments 111:124–134. https://doi.org/10.1016/j.dyepig.2014.06.011

    Article  CAS  Google Scholar 

  • Petrash DA, Lalonde SV, Gingras MK, Konhauser KO (2011) A surrogate approach to studying the chemical reactivity of burrow mucous linings in marine sediments. Palaios 26(9):594–600. https://doi.org/10.2110/palo.2010.p10-140r

    Article  Google Scholar 

  • Plyuscheva M, Martin D (2009) On the morphology of elytra as luminescent organs in scale-worms (Polychaeta, Polynoidae). Zoosymposia 2:379–389

    Google Scholar 

  • Prezant RS (1980) An antipredation mechanism of the polychaete Phyllodoce mucosa with notes on similar mechanisms in other potential prey. Fish Bull 77:605–616

    Google Scholar 

  • Prota G, D'Agostino M, Misuraca G (1970) Isolation and characterization of Hallachrome, a red pigment from the sea worm Halla parthenopeia. Specialia 27(1):15–16

    Google Scholar 

  • Prota G, D’Agostino M, Misuraca G (1972) The structure of Hallachrome: 7-Hydroxy-8-methoxy-6-methyl-1,2-anthraquinone. J Chem Soc Perkin Trans 1 13:1614–1616

  • Puglisi MP, Sneed JM, Sharp KH, Ritson-Williams R, Paul VJ (2014) Marine chemical ecology in benthic environments. Nat Prod Rep 31:1510–1553. https://doi.org/10.1039/c4np00017j

    Article  CAS  PubMed  Google Scholar 

  • Rasher DB, Hay ME (2010) Chemically rich seaweeds poison corals when not controlled by herbivores. Proc Natl Acad Sci USA 107(21):9683–9688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasher DB, Hay ME (2014) Competition induces allelopathy but suppresses growth and anti-herbivore defence in a chemically rich seaweed. Proc R Soc B 281:2013–2615

    Article  Google Scholar 

  • Rasher DB, Stout EP, Engel S, Kubanek J, Hay ME (2011) Macroalgal terpenes function as allelopathic agents against reef corals. Proc Natl Acad Sci USA 108(43):17726–17731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeiro SM, Bianco EM, Rogers R, Teixeira VL, Pereira RC (2010) Chemical defense of Hymeniacidon heliophila (Porifera: Halichondrida) aganist tropical predators. Braz J Oceanogr 58(4):315–321

    Article  Google Scholar 

  • Rouse GW, Pleijel F (2001) Polychaetes. Oxford University Press, Oxford

  • Rouse GW, Pleijel F (2006) Annelid phylogeny and systematics. In: Rouse GW, Pleijel F (eds) Reproductive biology and phylogeny of Annelida. Science Publishers, Enfield, New Hampshire, pp 3–21

    Google Scholar 

  • Rouse GW, Pleijel F (2007) Annelida. Zootaxa 1668:245–264

    Google Scholar 

  • Schaum CE, Batty R, Last KS (2013) Smelling danger – alarm cue responses in the polychaete Nereis (Hediste) diversicolor (Müller, 1776) to potential fish predation. PLoS ONE 8(10):e77431. https://doi.org/10.1371/journal.pone.0077431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schenning M, Proctor DT, Ragnarsson L, Barbier J, Lavidis NA, Molgó JJ, Zamponi GW, Schiavo G, Meunier FA (2006) Glycerotoxin stimulates neurotransmitter release from N-type Ca2+ channel expressing neurons. J Neurochem 98:894–904. https://doi.org/10.1111/j.1471-4159.2006.03938.x

    Article  CAS  PubMed  Google Scholar 

  • Schmitt TM, Hay ME, Lindquist N (1995) Constraints on chemically mediated coevolution: multiple functions for seaweed secondary metabolites. Ecology 76(1):107–123

    Article  Google Scholar 

  • Sears MA, Gerhart DJ, Rittschof D (1990) Antifouling agents from marine sponge Lissodendoryx isodictyalis Carter. J Chem Ecol 16(3):791–799

    Article  CAS  PubMed  Google Scholar 

  • Selander E, Jakobsenb HH, Lombarda F, Kiørboe T (2011) Grazer cues induce stealth behavior in marine dinoflagellates. Proc Natl Acad Sci USA 108(10):4030–4034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selander E, Kubanek J, Hambergd M, Andersson MX, Cervinc G, Paviac H (2015) Predator lipids induce paralytic shellfish toxins inbloom-forming algae. Proc Natl Acad Sci USA 112(20):6395–6400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo JK, Nam BH, Go HJ, Jeong M, Lee KY, Cho SM, Lee IA, Park NG (2016) Hemerythrin-related antimicrobial peptide, msHemerycin, purified from the body of the lugworm, Marphysa sanguinea. Fish Shellfish Immunol 57:49–59. https://doi.org/10.1016/j.fsi.2016.08.018

    Article  CAS  PubMed  Google Scholar 

  • Sheikh YM, Djerassi C (1975) 2,6-Dibromophenol and 2,4,6-tribromophenols – antiseptic secondary metabolites of Phoronopsis viridis. Experientia 31(3):265–266

    Article  CAS  PubMed  Google Scholar 

  • Shibata T, Miyasaki T, Miyake H, Tanaka R, Kawaguchi S (2014) The Influence of phlorotannins and bromophenols on the feeding behavior of marine herbivorous gastropod Turbo cornutus. Am J Plant Sci 5:387–392

    Article  CAS  Google Scholar 

  • Shimomura O (2006) Annelida. In: Shimomura O (ed) Bioluminescence: chemical principles and methods, revised edition. World Scientific Publishing Co Pte Ltd, Singapore, pp 216–247

    Chapter  Google Scholar 

  • Skropeta D (2008) Deep-sea natural products. Nat Prod Rep 25(6):989–1216. https://doi.org/10.1039/b808743a

    Article  CAS  Google Scholar 

  • Skropeta D, Wei L (2014) Recent advances in deep-sea natural products. Nat Prod Rep 31(8):999–1025. https://doi.org/10.1039/c3np70118b

    Article  CAS  PubMed  Google Scholar 

  • Slattery M, McClintock JB, Heineb JN (1995) Chemical defenses in Antarctic soft corals: evidence for antifouling compounds. J Exp Mar Biol Ecol 190:61–77

    Article  CAS  Google Scholar 

  • Stabili L, Licciano M, Giangrande A, Fanelli G, Cavallo RA (2006) Sabella spallanzanii filter-feeding on bacterial community: ecological implications and applications. Mar Environ Res 61:4–92. https://doi.org/10.1016/j.marenvres.2005.06.001

    Article  CAS  Google Scholar 

  • Stabili L, Schirosi R, Licciano M, Giangrande A (2009) The mucus of Sabella spallanzanii (Annelida, Polychaeta): its involvement in chemical defence and fertilization success. J Exp Mar Biol Ecol 374:144–149. https://doi.org/10.1016/j.jembe.2009.04.016

    Article  CAS  Google Scholar 

  • Stabili L, Schirosi R, Di Benedetto A, Merendino A, Villanova L, Giangrande A (2011) First insights into the biochemistry of Sabella spallanzanii (Annelida: Polychaeta) mucus: a potentially unexplored resource for applicative purposes. J Mar Biol Assoc UK 91(1):199–208. https://doi.org/10.1017/S0025315410001013

    Article  CAS  Google Scholar 

  • Stabili L, Schirosi R, Licciano M, Giangrande A (2014a) Role of Myxicola infundibulum (Polychaeta, Annelida) mucus: from bacterial control to nutritional home site. J Exp Mar Biol Ecol 461:344–349. https://doi.org/10.1016/j.jembe.2014.09.005

    Article  CAS  Google Scholar 

  • Stabili L, Giangrande A, Pizzolante G, Caruso G, Alifano P (2014b) Characterization of Vibrios diversity in the mucus of the polychaete Myxicola infundibulum (Annellida, Polichaeta). Microb Ecol 67:186–194. https://doi.org/10.1007/s00248-013-0312-2

    Article  PubMed  Google Scholar 

  • Stachowicz JJ (2001) Chemical ecology of mobile benthic invertebrates: predators and prey, allies and competitors. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC Press, Boca Raton, pp. 157–194

  • Steinberg PD (1985) Feeding preferences of Tegula funebralis and chemical defenses of marine brown algae. Ecol Monogr 55(3):333–349

    Article  Google Scholar 

  • Steinberg PD (1988) Effects of quantitative and qualitative variation in phenolic compounds on feeding in three species of marine invertebrate herbivores. J Exp Mar Biol Ecol 120:221–237

    Article  Google Scholar 

  • Steward CC, Lovell CR (1997) Respiration and assimilation of 4-bromophenol by estuarine sediment bacteria. Microb Ecol 33:198–205

    Article  CAS  PubMed  Google Scholar 

  • Steward CC, Pinckney J, Piceno Y, Lovell CR (1992) Bacterial numbers and activity, microalgal biomass and productivity, and meiofaunal distribution in sediments naturally contaminated with biogenic bromophenols. Mar Ecol Prog Ser 90:61–71

    Article  CAS  Google Scholar 

  • Steward CC, Nold SC, Ringelberg DB, White DC, Lovell CR (1996) Microbial biomass and community structures in the burrows of bromophenol producing and non-producing marine worms and surrounding sediments. Mar Ecol Prog Ser 133:149–165

    Article  Google Scholar 

  • Storch V, Welsch U (1972) Ultrastructure and histochemistry of the integument of air-breathing polychaetes from mangrove swamps of Sumatra. Mar Biol 17:137–144

    Google Scholar 

  • Suadicani SO, de Freitas JC, Sawaya MI (1993) Pharmacological evidence for the presence of a beta-adrenoceptor-like agonist in the amphinomid polychaete Eurythoe complanata. Comp Biochem Physiol 104C(2):327–332

    CAS  Google Scholar 

  • Sudatti DB, Rodrigues SV, Pereira RC (2006) Quantitative GC-ECD analysis of halogenated metabolites: determination of elatol on surface and within-thallus of Laurencia obtusa. J Chem Ecol 32:835–843. https://doi.org/10.1007/s10886-006-9033-z

    Article  CAS  PubMed  Google Scholar 

  • Taboada S, Núñez-Pons L, Avila C (2013) Feeding repellence of Antarctic and Sub-Antarctic benthic invertebrates against the omnivorous sea star Odontaster validus. Polar Biol 36:13–25. https://doi.org/10.1007/s00300-012-1234-z

    Article  Google Scholar 

  • Taghon GL (1982) Optimal foraging by deposit-feeding invertebrates: roles of particle size and organic coating. Oecologia (Berl) 52:295–304

    Article  Google Scholar 

  • Tanino H, Takakura H, Kakoi H, Okada K, Inoue S (1994) (S)-6-(1-hydroxypropyl) lumazine derivatives from the marine polychaete, Odontosyllis undecimdonta. Heterocycles 38(5):971–974

    Article  CAS  Google Scholar 

  • Tanino H, Takakura H, Kakoi H, Okada K, Inoue S (1996) (S)-2-methyl-1,5-bis(1,3-dimethyl-6-lumazinyl)-1,5-pentanedione from the marine polychaete, Odontosyllis undecimdonta. Heterocycles 42(1):125–128

    Article  CAS  Google Scholar 

  • Tasiemski A, Schikorsk D, Le Marrec-Croq F, Camp CPV, Boidin-Wichlacz C, Sautière PE (2007) Hedistin: a novel antimicrobial peptide containing bromotryptophan constitutively expressed in the NK cells-like of the marine annelid, Nereis diversicolor. Dev Comp Immunol 31(8):749–762. https://doi.org/10.1016/j.dci.2006.11.003

    Article  CAS  PubMed  Google Scholar 

  • Thacker RW, Becerro MA, Lumbang WA, Paul VJ (1998) Allelopathic interactions between sponges on a tropical reef. Ecology 79(5):1740–1750

    Article  Google Scholar 

  • Thornburg CC, Zabriskie TM, McPhail KL (2010) Deep-sea hydrothermal vents: Potential hot spots for natural products discovery? J Nat Prod 73:489–499. https://doi.org/10.1021/np900662k

    Article  CAS  PubMed  Google Scholar 

  • Toth GB, Pavia H (2000) Water-borne cues induce chemical defense in amarine alga (Ascophyllum nodosum). Proc Natl Acad Sci USA 97(26):14418–14420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toth GB, Langhamer O, Pavia H (2005) Inducible and constitutive defenses of valuable seaweed tissues: consequences for herbivore fitness. Ecology 86(3):612–618

    Article  Google Scholar 

  • Tsuji FI, Hill E (1983) Repetitive cycles of bioluminescence and spawning in the polychaete, Odontosyllis phosphorea. Biol Bull 165(2):444–449

    Article  PubMed  Google Scholar 

  • Unson MD, Holland ND, Faulkner DJ (1994) A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue. Mar Biol 119:1–11

    Article  CAS  Google Scholar 

  • Uriz MJ, Martin D, Rosell D (1992) Relationships of biological and taxonomical characteristics to chemically mediated bioactivity in the Mediterranean littoral sponges. Mar Biol 113:287–297

    Google Scholar 

  • von Reumont BM, Campbell LI, Richter S, Hering L, Sykes D, Hetmank J, Jenner RA, Bleidorn C (2014) A polychaete’s powerful punch: venom gland transcriptomics of Glycera reveals a complex cocktail of toxin homologs. Genome Biol Evol 6(9):2406–2423. https://doi.org/10.1093/gbe/evu190

    Article  CAS  Google Scholar 

  • Wahl M (1989) Marine epibiosis. I. Fouling and antifouling: some basic aspects. Mar Ecol Prog Ser 58:175–189

    Article  Google Scholar 

  • Wahl M, Hay ME (1995) Associational resistance and shared doom: effects of epibiosis on herbivory. Oecologia 102:329–340

    Article  PubMed  Google Scholar 

  • Watson GJ, Hamilton KM, Tuffnail WE (2005) Chemical alarm signalling in the polychaete Nereis (Neanthes) virens (Sars) (Annelida: Polychaeta). Anim Behav 70:1125–1132. https://doi.org/10.1016/j.anbehav.2005.03.011

    Article  Google Scholar 

  • Watts MJ, Barlow TS, Button M, Sarkar SK, Bhattacharya BD, Alam MA, Gomes A (2013) Arsenic speciation in polychaetes (Annelida) and sediments from the intertidal mudflat of Sundarban mangrove wetland, India. Environ Geochem Health 35:13–25. https://doi.org/10.1007/s10653-012-9471-1

    Article  CAS  PubMed  Google Scholar 

  • Weber K, Ernst W (1978) Occurrence of brominated phenols in the marine polychaete Lanice conchilega. Naturwissenschaften 65:262

    Article  CAS  Google Scholar 

  • Whitfield FB, Drew M, Helidoniotis F, Svoronos D (1999) Distribution of bromophenols in species of marine polychaetes and bryozoans from Eastern Australia and the role of such animals in the flavor of edible ocean fish and prawns (Shrimp). J Agric Food Chem 47:475–4762. https://doi.org/10.1021/jf9904719

    Google Scholar 

  • Woodin SA, Walla MD, Lincoln DE (1987) Occurrence of brominated compounds in soft-bottom benthic organisms. J Exp Mar Biol Ecol 107:209–217

    Article  CAS  Google Scholar 

  • Woodin SA, Marinelli RL, Lincoln DE (1993) Allelochemical inhibition of recruitament in a sedimentary assemblage. J Chem Ecol 19(3):517–530

    Article  CAS  PubMed  Google Scholar 

  • Woodin SA, Lindsay SM, Lincoln DE (1997) Biogenic bromophenols as negative recruitment cues. Mar Ecol Prog Ser 157:303–306

    Article  CAS  Google Scholar 

  • Wright JT, De Nys R, Poore AGB, Steinberg PD (2004) Chemical defense in a marine alga: heritability and the potential for selection by herbivores. Ecology 85(11):2946–2959

    Article  Google Scholar 

  • Yoon KS, Chen YP, Lovell CR, Lincoln DE, Knapp LW, Woodin SA (1994) Localization of the chloroperoxidase of the capitellid polychaete Notomastus lobatus. Biol Bull 187:215–222

    Article  CAS  PubMed  Google Scholar 

  • Zapata-Vívenes E, Nusetti OA, Marcano L, Esclapes MM, Arredondo L (2005) Immunological responses and wound healing in the polychaete Eurythoe complanata (Annelida: Amphinomidae) exposed to copper. Cienc Mar 31:1–10

    Article  Google Scholar 

  • Zimmer RK, Butman CA (2000) Chemical signaling processes in the marine environment. Biol Bull 198(2):168–187. https://doi.org/10.2307/1542522

    Article  CAS  PubMed  Google Scholar 

  • Zörner SA, Fischer A (2007) The spatial pattern of bioluminescent flashes in the polychaete Eusyllis blomstrandi (Annelida). Helgol Mar Res 61:55–66. https://doi.org/10.1007/s10152-006-0053-4

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from CNPq (Conselho Nacional de Pesquisa e Desenvolvimento), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and FAPERJ (Fundação Carlos Chagas Filho de Amparo à Pesquisa ao Estado do Rio de Janeiro). Without it, this study would not have been possible. We are thankful to Diana Cavalcanti and Ana Claudia dos Santos Brasil whose comments helped to improve an earlier version of this manuscript. Two anonymous reviewers also contributed to improve the final version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Cyrino Leal Coutinho.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coutinho, M.C.L., Teixeira, V.L. & Santos, C.S.G. A Review of “Polychaeta” Chemicals and their Possible Ecological Role. J Chem Ecol 44, 72–94 (2018). https://doi.org/10.1007/s10886-017-0915-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-017-0915-z

Keywords

Navigation