Journal of Chemical Ecology

, Volume 42, Issue 10, pp 1086–1097 | Cite as

Phylogeny Explains Variation in The Root Chemistry of Eucalyptus Species

  • John K. Senior
  • Brad M. Potts
  • Noel W. Davies
  • Rachel C. Wooliver
  • Jennifer A. Schweitzer
  • Joseph K. Bailey
  • Julianne M. O’Reilly-Wapstra


Plants are dependent on their root systems for survival, and thus are defended from belowground enemies by a range of strategies, including plant secondary metabolites (PSMs). These compounds vary among species, and an understanding of this variation may provide generality in predicting the susceptibility of forest trees to belowground enemies and the quality of their organic matter input to soil. Here, we investigated phylogenetic patterns in the root chemistry of species within the genus Eucalyptus. Given the known diversity of PSMs in eucalypt foliage, we hypothesized that (i) the range and concentrations of PSMs and carbohydrates in roots vary among Eucalyptus species, and (ii) that phylogenetic relationships explain a significant component of this variation. To test for interspecific variation in root chemistry and the influence of tree phylogeny, we grew 24 Eucalyptus species representing two subgenera (Eucalyptus and Symphyomyrtus) in a common garden for two years. Fine root samples were collected from each species and analyzed for total phenolics, condensed tannins, carbohydrates, terpenes, and formylated phloroglucinol compounds. Compounds displaying significant interspecific variation were mapped onto a molecular phylogeny and tested for phylogenetic signal. Although all targeted groups of compounds were present, we found that phenolics dominated root defenses and that all phenolic traits displayed significant interspecific variation. Further, these compounds displayed a significant phylogenetic signal. Overall, our results suggest that within these representatives of genus Eucalyptus, more closely related species have more similar root chemistry, which may influence their susceptibility to belowground enemies and soil organic matter accrual.


Eucalyptus Phenolics Phylogenetic signal Roots Terpenes 



We thank Hugh Fitzgerald for assistance in the sampling of root material and assistance with laboratory work. This research was funded by an Australian Research Council Discovery Grant (number: DP120102889) and further supported by an Australian Research Council Linkage Grant (number: LP120200380).

Supplementary material

10886_2016_750_MOESM1_ESM.docx (29 kb)
ESM 1 (DOCX 29 kb)


  1. Agrawal AA, Salminen JP, Fishbein M (2009) Phylogenetic trends in phenolic metabolism of milkweeds (Asclepias): evidence for escalation. Evolution 63:663–673CrossRefPubMedGoogle Scholar
  2. Anacker BL, Klironomos JN, Maherali H, Reinhart KO, Strauss SY (2014) Phylogenetic conservatism in plant-soil feedback and its implications for plant abundance. Ecol Lett 17:1613–1621CrossRefPubMedGoogle Scholar
  3. Baetz U, Martinoia E (2014) Root exudates: the hidden part of plant defense. Trends Plant Sci 19:90–98CrossRefPubMedGoogle Scholar
  4. Bates D, Maechler M, Bolker B, Walker S (2015) lme4: linear mixed-effects models using Eigen and S4. R package version 1:1–10Google Scholar
  5. Blomberg SP, Garland T Jr, Ives AR, Crespi B (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745CrossRefPubMedGoogle Scholar
  6. Borzak CL, O’Reilly-Wapstra JM, Potts BM (2015) Direct and indirect effects of marsupial browsing on a foundation tree species. Oikos 124:515–524CrossRefGoogle Scholar
  7. Cahill D, Bennett I, McComb J (1993) Mechanisms of resistance to Phytophthora cinnamomi in clonal, micropropagated Eucalyptus marginata. Plant Pathol 42:865–872CrossRefGoogle Scholar
  8. Cai Y, Gaffney SH, Lilley TH, Haslam E (1989) Carbohydrate-polyphenol complexation. In: Hemingway RW, Karchesy JJ (eds) Chemistry and significance of condensed tannins. Plenum, New York, pp. 307–322CrossRefGoogle Scholar
  9. Carrillo-Gavilán A, Moreira X, Zas R, Gonzalez-Voyer A, Vilà M, Sampedro L (2015) Phylogenetic and biogeographical patterns in defensive strategies and quantitative allocation to chemical defences in Palaearctic and Nearctic pine trees. J Biogeogr 42:684–693CrossRefGoogle Scholar
  10. Clark KE, Hartley SE, Johnson SN (2011) Does mother know best? The preference–performance hypothesis and parent–offspring conflict in aboveground–belowground herbivore life cycles. Ecol Entomol 36:117–124CrossRefGoogle Scholar
  11. Cole RA (1987) Intensity of radicle fluorescence as related to the resistance of seedlings of lettuce to the lettuce root aphid and carrot to the carrot fly. Ann Appl Biol 111:629–639CrossRefGoogle Scholar
  12. Cole RA, Riggall W, Morgan A (1993) Electronically monitored feeding behaviour of the lettuce root aphid (Pemphigus bursarius) on resistant and susceptible lettuce varieties. Entomol Exp Appl 68:179–185CrossRefGoogle Scholar
  13. Coq S, Souquet J-M, Meudec E, Cheynier V, Hättenschwiler S (2010) Interspecific variation in leaf litter tannins drives decomposition in a tropical rain forest of French Guiana. Ecology 91:2080–2091CrossRefPubMedGoogle Scholar
  14. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214CrossRefPubMedPubMedCentralGoogle Scholar
  15. Erb M, Huber M, Robert CA, Ferrieri AP, Machado RA, Arce CC (2013) The role of plant primary and secondary metabolites in root-herbivore behaviour, nutrition and physiology. Adv Insect Physiol 45:53–95CrossRefGoogle Scholar
  16. Eschler B, Pass D, Willis R, Foley W (2000) Distribution of foliar formylated phloroglucinol derivatives amongst Eucalyptus species. Biochem Syst Ecol 28:813–824CrossRefPubMedGoogle Scholar
  17. Eyles A, Davies NW, Mohammed C (2003) Novel detection of formylated phloroglucinol compounds (FPCs) in the wound wood of Eucalyptus globulus and E. nitens. J Chem Ecol 29:881–898CrossRefPubMedGoogle Scholar
  18. Freschet GT, Cornwell WK, Wardle DA, Elumeeva TG, Liu W, Jackson BG, Onipchenko VG, Soudzilovskaia NA, Tao J, Cornelissen JH (2013) Linking litter decomposition of above-and below-ground organs to plant–soil feedbacks worldwide. J Ecol 101:943–952CrossRefGoogle Scholar
  19. Gleadow RM, Veechies AC, Woodrow IE (2003) Cyanogenic Eucalyptus nobilis is polymorphic for both prunasin and specific beta-glucosidases. Phytochemistry 63:699–704CrossRefPubMedGoogle Scholar
  20. Graham HD (1992) Stabilization of the Prussian blue color in the determination of polyphenols. J Agric Food Chem 40:801–805CrossRefGoogle Scholar
  21. Hagerman AE, Butler LG (1980) Condensed tannin purification and characterization of tannin-associated proteins. J Agric Food Chem 28:947–952CrossRefPubMedGoogle Scholar
  22. Ives AR, Midford PE, Garland T (2007) Within-species variation and measurement error in phylogenetic comparative methods. Syst Biol 56:252–270CrossRefPubMedGoogle Scholar
  23. Jackson T, Burgess T, Colquhoun I, Hardy GS (2000) Action of the fungicide phosphite on Eucalyptus marginata inoculated with Phytophthora cinnamomi. Plant Pathol 49:147–154CrossRefGoogle Scholar
  24. Johnson SN, Barton AT, Clark KE, Gregory PJ, McMenemy LS, Hancock RD (2011) Elevated atmospheric carbon dioxide impairs the performance of root-feeding vine weevils by modifying root growth and secondary metabolites. Glob Chang Biol 17:688–695CrossRefGoogle Scholar
  25. Johnson MT, Ives AR, Ahern J, Salminen JP (2014) Macroevolution of plant defenses against herbivores in the evening primroses. New Phytol 203:267–279CrossRefPubMedGoogle Scholar
  26. Kile G, Hardy R, Turnbull C (1979) The association between Abantiades latipennis (Lepidoptera, family Hepialidae) and Eucalyptus obliqua and Eucalyptus regnans in Tasmania. Aust J Entomol 18:7–17CrossRefGoogle Scholar
  27. Kraft NJ, Ackerly DD (2010) Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecol Monogr 80:401–422CrossRefGoogle Scholar
  28. Kuznetsova A, Brockhoff P, Christensen R (2015) lmerTest: tests in linear mixed effects models. R Package Version 2:0–29Google Scholar
  29. Lanoue A, Burlat V, Henkes GJ, Koch I, Schurr U, Röse US (2010) De novo biosynthesis of defense root exudates in response to Fusarium attack in barley. New Phytol 185:577–588CrossRefPubMedGoogle Scholar
  30. Lewis PO (2001) A likelihood approach to estimating phylogeny from discrete morphological character data. Syst Biol 50:913–925CrossRefPubMedGoogle Scholar
  31. Li H, Madden J, Potts B (1995) Variation in volatile leaf oils of the Tasmanian Eucalyptus species - I. Subgenus Monocalyptus. Biochem Syst Ecol 23:299–318CrossRefGoogle Scholar
  32. Li H, Madden J, Potts B (1996) Variation in leaf waxes of the Tasmanian Eucalyptus species - II. Subgenus Symphyomyrtus. Biochem Syst Ecol 25:631–657CrossRefGoogle Scholar
  33. Ling-Lee M, Chilvers G, Ashford A (1977) A histochemical study of phenolic materials in mycorrhizal and uninfected roots of Eucalyptus fastigata Deane and Maiden. New Phytol 78:313–328CrossRefGoogle Scholar
  34. Liu X, Liang M, Etienne RS, Wang Y, Staehelin C, Yu S (2012) Experimental evidence for a phylogenetic Janzen–Connell effect in a subtropical forest. Ecol Lett 15:111–118CrossRefPubMedGoogle Scholar
  35. Mann AN, O’Reilly-Wapstra J, Iason G, Sanson G, Davies NW, Tilyard P, Williams D, Potts B (2012) Mammalian herbivores reveal marked genetic divergence among populations of an endangered plant species. Oikos 121:268–276CrossRefGoogle Scholar
  36. Matsuki M, Foley WJ, Floyd RB (2011) Role of volatile and non-volatile plant secondary metabolites in host tree selection by Christmas beetles. J Chem Ecol 37:286–300CrossRefPubMedGoogle Scholar
  37. McKiernan AB, O’Reilly-Wapstra JM, Price C, Davies NW, Potts BM, Hovenden MJ (2012) Stability of plant defensive traits among populations in two Eucalyptus species under elevated carbon dioxide. J Chem Ecol 38:204–212Google Scholar
  38. McKiernan AB, Hovenden MJ, Brodribb TJ, Potts BM, Davies NW, O’Reilly-Wapstra JM (2014) Effect of limited water availability on foliar plant secondary metabolites of two Eucalyptus species. Environ Exp Bot 105:55–64CrossRefGoogle Scholar
  39. McKinnon GE, Vaillancourt RE, Steane DA, Potts BM (2008) An AFLP marker approach to lower-level systematics in Eucalyptus (Myrtaceae). Am J Bot 95:368–380CrossRefPubMedGoogle Scholar
  40. Moore BD, Foley WJ (2005) Tree use by koalas in a chemically complex landscape. Nature 435:488–490CrossRefPubMedGoogle Scholar
  41. Moore BD, Foley WJ, Wallis IR, Cowling A, Handasyde KA (2005) Eucalyptus foliar chemistry explains selective feeding by koalas. Biol Lett 1:64–67CrossRefPubMedPubMedCentralGoogle Scholar
  42. Mutabaruka R, Hairiah K, Cadisch G (2007) Microbial degradation of hydrolysable and condensed tannin polyphenol–protein complexes in soils from different land-use histories. Soil Biol Biochem 39:1479–1492CrossRefGoogle Scholar
  43. Northup RR, Yu Z, Dahlgren RA, Vogt KA (1995) Polyphenol control of nitrogen release from pine litter. Nature 377:227–229CrossRefGoogle Scholar
  44. O’Reilly-Wapstra J, McArthur C, Potts B (2004) Linking plant genotype, plant defensive chemistry and mammal browsing in a Eucalyptus species. Funct Ecol 18:677–684CrossRefGoogle Scholar
  45. O’Reilly-Wapstra JM, Potts BM, McArthur C, Davies NW (2005a) Effects of nutrient variability on the genetic-based resistance of Eucalyptus globulus to a mammalian herbivore and on plant defensive chemistry. Oecologia 142:597–605CrossRefPubMedGoogle Scholar
  46. O’Reilly-Wapstra JM, Potts BM, Mcarthur C, Davies NW, Tilyard P (2005b) Inheritance of resistance to mammalian herbivores and of plant defensive chemistry in an Eucalyptus species. J Chem Ecol 31:357–375CrossRefPubMedGoogle Scholar
  47. O’Reilly-Wapstra JM, Humphreys JR, Potts BM (2007) Stability of genetic-based defensive chemistry across life stages in a Eucalyptus species. J Chem Ecol 33:1876–1884CrossRefPubMedGoogle Scholar
  48. Orozco-Aceves M, Standish RJ, Tibbett M (2015) Long-term conditioning of soil by plantation eucalypts and pines does not affect growth of the native jarrah tree. For Ecol Manag 338:92–99CrossRefGoogle Scholar
  49. Page DE, Close D, Beadle CL, Wardlaw TJ, Mohammed CL (2013) Seasonal dynamics in understorey abundance and carbohydrate concentration in relation to browsing and bark stripping of Tasmanian Pinus radiata plantations. For Ecol Manag 296:98–107CrossRefGoogle Scholar
  50. Paradis E, Blomberg S, Bolker B, Claude J, Cuong HS, Desper R, Didier G, Durand B, Dutheil J, Gascuel O (2012) Package ‘ape’: Analyses of phylogenetics and evolution. R package Version 3.4 4Google Scholar
  51. Pearse IS, Hipp AL (2009) Phylogenetic and trait similarity to a native species predict herbivory on non-native oaks. Proc Natl Acad Sci U S A 106:18097–18102CrossRefPubMedPubMedCentralGoogle Scholar
  52. Podger F, Batini F (1971) Susceptibility to Phytophthora cinnamomi root-rot of thirty six species of Eucalyptus. Aust Forest Res 5:9–20Google Scholar
  53. Porter LJ, Hrstich LN, Chan BG (1985) The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry 25:223–230CrossRefGoogle Scholar
  54. Potts BM, Sandhu KS, Wardlaw T, Freeman J, Li H, Tilyard P, Park RF (2016) Evolutionary history shapes the susceptibility of an island tree flora to an exotic pathogen. For Ecol Manag 368:183–193CrossRefGoogle Scholar
  55. Rasmann S, Agrawal AA (2008) In defense of roots: a research agenda for studying plant resistance to belowground herbivory. Plant Physiol 146:875–880CrossRefPubMedPubMedCentralGoogle Scholar
  56. Rasmann S, Agrawal AA (2011) Evolution of specialization: a phylogenetic study of host range in the red milkweed beetle (Tetraopes tetraophthalmus). Am Nat 177:728–737CrossRefPubMedGoogle Scholar
  57. Reinhart KO, Wilson GW, Rinella MJ (2012) Predicting plant responses to mycorrhizae: integrating evolutionary history and plant traits. Ecol Lett 15:689–695CrossRefPubMedGoogle Scholar
  58. R Development Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL:
  59. Revell LJ (2012) Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3:217–223CrossRefGoogle Scholar
  60. Ripley B, Venables B, Bates DM, Hornik K, Gebhardt A, Firth D, Ripley MB (2015) Package ‘MASS’. R Package Version 7:3–45Google Scholar
  61. Sayad E, Hosseini S, Hosseini V, Salehe-Shooshtari M (2012) Soil macrofauna in relation to soil and leaf litter properties in tree plantations. J For Sci 58:170–180Google Scholar
  62. Schweitzer JA, Bailey JK, Rehill BJ, Martinsen GD, Hart SC, Lindroth RL, Keim P, Whitham TG (2004) Genetically based trait in a dominant tree affects ecosystem processes. Ecol Lett 7:127–134CrossRefGoogle Scholar
  63. Schweitzer JA, Madritch MD, Bailey JK, LeRoy CJ, Fischer DG, Rehill BJ, Lindroth RL, Hagerman AE, Wooley SC, Hart SC (2008) From genes to ecosystems: the genetic basis of condensed tannins and their role in nutrient regulation in a Populus model system. Ecosystems 11:1005–1020CrossRefGoogle Scholar
  64. Senior J, Schweitzer J, O’Reilly-Wapstra J, Chapman S, Steane D, Langley A, Bailey J (2013) Phylogenetic responses of forest trees to global change. PLoS One 8:e60088CrossRefPubMedPubMedCentralGoogle Scholar
  65. Steane DA, Nicolle D, Sansaloni CP, Petroli CD, Carling J, Kilian A, Myburg AA, Grattapaglia D, Vaillancourt RE (2011) Population genetic analysis and phylogeny reconstruction in Eucalyptus (Myrtaceae) using high-throughput, genome-wide genotyping. Mol Phylogenet Evol 59:206–224CrossRefPubMedGoogle Scholar
  66. Stevenson PC, Muyinza H, Hall DR, Porter EA, Farman DI, Talwana H, Mwanga RO (2009) Chemical basis for resistance in sweetpotato Ipomoea batatas to the sweetpotato weevil Cylas puncticollis. Pure Appl Chem 81:141–151CrossRefGoogle Scholar
  67. Tedersoo L, Mett M, Ishida TA, Bahram M (2013) Phylogenetic relationships among host plants explain differences in fungal species richness and community composition in ectomycorrhizal symbiosis. New Phytol 199:822–831CrossRefPubMedGoogle Scholar
  68. Tippett J, Hill T, Shearer B (1985) Resistance of Eucalyptus spp. to invasion by Phytophthora cinnamomi. Aust J Bot 33:409–418CrossRefGoogle Scholar
  69. van Dam NM (2009) Belowground herbivory and plant defenses. Annu Rev Ecol Evol Syst 40:373–391CrossRefGoogle Scholar
  70. Vannette RL, Rasmann S (2012) Arbuscular mycorrhizal fungi mediate below-ground plant-herbivore interactions: a phylogenetic study. Funct Ecol 26:1033–1042CrossRefGoogle Scholar
  71. Wardle D, Bonner K, Barker G (2002) Linkages between plant litter decomposition, litter quality, and vegetation responses to herbivores. Funct Ecol 16:585–595CrossRefGoogle Scholar
  72. Wilcken CF, Raetano CG, Forti LC (2002) Termite pests in Eucalyptus forests of Brazil. Sociobiology 40:179–190Google Scholar
  73. Wingfield M, Slippers B, Hurley B, Coutinho T, Wingfield B, Roux J (2008) Eucalypt pests and diseases: growing threats to plantation productivity. South For 70:139–144Google Scholar
  74. Wurst S, Wagenaar R, Biere A, Van der Putten WH (2010) Microorganisms and nematodes increase levels of secondary metabolites in roots and root exudates of Plantago lanceolata. Plant Soil 329:117–126CrossRefGoogle Scholar
  75. Yang J, Ci X, Lu M, Zhang G, Cao M, Li J, Lin L (2014) Functional traits of tree species with phylogenetic signal co-vary with environmental niches in two large forest dynamics plots. J Plant Ecol 7:115–125CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • John K. Senior
    • 1
  • Brad M. Potts
    • 1
  • Noel W. Davies
    • 2
  • Rachel C. Wooliver
    • 3
  • Jennifer A. Schweitzer
    • 3
  • Joseph K. Bailey
    • 3
  • Julianne M. O’Reilly-Wapstra
    • 1
  1. 1.School of Biological SciencesUniversity of TasmaniasHobartAustralia
  2. 2.Central Science LaboratoryUniversity of TasmaniaHobartAustralia
  3. 3.Department of Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleUSA

Personalised recommendations