Skip to main content
Log in

Behavioral Evidence for Olfactory-Based Location of Honeybee Colonies by the Scarab Oplostomus haroldi

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The Afro-tropical scarab Oplostomus haroldi (Witte) is a pest of honeybees in East Africa with little information available on its chemical ecology. Recently, we identified a female-produced contact sex pheromone, (Z)-9-pentacosene, from the cuticular lipids that attracted males. Here, we investigated the kairomonal basis of host location in O. haroldi. We used coupled gas chromatography/electroantennographic detection (GC/EAD) and GC/mass spectrometry to identify antennally-active compounds from volatiles collected from honeybee colonies. Antennae of both sexes of the beetle consistently detected seven components, which were identified as 3-hydroxy-2-butanone, 2,3-butanediol, butyl acetate, isopentyl acetate, butyl butyrate, hexyl acetate, and methyl benzoate. In olfactometer bioassays, both sexes responded to the full seven-component synthetic blend over solvent controls, but chose honeybee colony odors over the blend. These findings suggest that the seven compounds are components of a kairomone from honeybee colonies used by O. haroldi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Benda N, Boucias D, Torto B, Teal PEA (2008) Detection and characterisation of Kodamaea ohmeri associated with small hive beetle Aethina tumida infesting honey bee hives. J Apic Res 47:193–200

    Article  Google Scholar 

  • Bengtsson JM, Wolde-Hawariat Y, Khbaish H, Negash M, Jembere B, Seyoum E, BS H, MC L, Hillbur Y (2009) Field attractants for Pachnoda interrupta selected by means of GC-EAD and single sensillum screening. J Chem Ecol 35:1063–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bengtsson JM, Khbaish H, Reineckle A, Wolde-Hawariat Y, Negash M, Seyoum HBS, Hillbur Y, Larsson MC (2011) Conserved, highly specialized olfactory neurons for food compounds in 2 congeneric scarab beetles, Pachnoda interrupta and Pachnoda marginata. Chem Senses 36:499–513

    Article  CAS  PubMed  Google Scholar 

  • Donaldson JMI (1989) Oplostomus fuligineus (Coleoptera: Scarabaeidae): life cycle and biology under laboratory conditions, and its occurrence in bee hives. Coleopt Bull 43:177–182

    Google Scholar 

  • Dukas R (2008) Evolutionary biology of insect learning. Annu Rev Entomol 53:145–160

    Article  CAS  PubMed  Google Scholar 

  • Fombong AT, Haas F, Ndegwa PN, Irungu LW (2012a) Life history of Oplostomus haroldi (Coleoptera: Scarabaeidae) under laboratory conditions and a description of its third instar larva. Int J Trop Insect Sci 32:56–63

    Article  Google Scholar 

  • Fombong AT, Teal PEA, Arbogast RT, Ndegwa PN, Irungu LW, Torto B (2012b) Chemical communication in the honey bee scarab pest Oplostomus haroldi: role of (Z)-9-pentacosene. J Chem Ecol 38:1463–1473

    Article  CAS  PubMed  Google Scholar 

  • Fombong AT, Mumoki F, Muli E, Masiga D, Arbogast RT, Teal PEA, Torto B (2013) Occurrence, diversity and pattern of damage of two Oplostomus species (Coleoptera:Scarabaeidae), honey bee pests in Kenya. Apidologie 44:11–20

    Article  Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO) (2006) Honey bee diseases and pests: A practical guide. Rome, Italy

    Google Scholar 

  • Hepburn HR, Radloff SE (1998) Honey bees of Africa. Springer, Berlin, Germany

    Book  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Springer, Berlin, Germany

    Book  Google Scholar 

  • Johannsmeier MF (2001) Beekeeping in South Africa. Plant protection research institute, Pretoria, South Africa

    Google Scholar 

  • Knudsen J, Ollsten L, Bergstrom G (1993) Floral scents-a check list of volatile compounds isolated by head-space techniques. Phytochemistry 33:253–280

    Article  CAS  Google Scholar 

  • Knudsen J, Eriksson R, Gershenzon J, Ståhl B (2006) Diversity and distribution of floral scent. Bot Rev 72:1–120

    Article  Google Scholar 

  • Moritz FA, Hillesheim E (1990) Olfactory discrimination between group odours in honey bees: Kin or nestmate recognition? Insect Soc 37:90–99

    Article  Google Scholar 

  • Nazzi F, Le Conte Y (2016) Ecology of Varroa destructor, the major ectoparasite of the western honey bee Apis mellifera. Annu Rev Entomol 61:417–432

  • Njau MA, Mpuya PM, Mturi FA (2009) Apiculture potential in protected areas: The case study of Udzungwa Mountains National Park, Tanzania. IJBESM 5:95–101

    Google Scholar 

  • Nojima S, Sakata T, Yoshimura K, Robbins PS, Morris BD, Roelofs WL (2003) Male specific EAD active compounds produced by female European chafer Rhzotrogus majalis (Razoumowsky. J Chem Ecol 29:503–507

    Article  CAS  PubMed  Google Scholar 

  • Oyerinde AA, Ande AT (2009) Distribution and impact of honey bee pests on colony development in Kwara State, Nigeria. JASS 5:85–88

    Google Scholar 

  • Rochat D, Morin J-P, Kakul T, Beaudoin-Olliveir L, Porior R, Renou M, Isabelle M, Stathers T, Embupa S, Laup S (2002) Activity of male pheromone of Melanesian rhinoceros beetle Scapanes australis. J Chem Ecol 28:479–499

    Article  CAS  PubMed  Google Scholar 

  • Smyth RR, Tallamy DW, Renwick JAA, Hoffmann MP (2002) Effect of age sex and dietary history on response to curcubitacin in Acalymma vittatum. Entomol Exp Appl 104:69–78

    Article  CAS  Google Scholar 

  • Steenhuisen S-L, Jürgens A, Johnson SD (2013) Effects of volatile compounds emitted by Protea species (Proteaceae) on antennal electophysiological responses and attraction of Cetoniine beetles. J Chem Ecol 39:438–446

    Article  CAS  PubMed  Google Scholar 

  • Stensmyr MC, Larsson MC, Bice S, Hansson BS (2001) Detection of fruit- and flower emitted volatiles by olfactory receptor neurons in the polyphagous fruit chafer Pachnoda marginata (Coleoptera: Cetoniinae. J Comp Physiol 187:509–519

    CAS  Google Scholar 

  • Suazo A, Torto B, Teal PEA, Tumlinson JH (2003) Response of the small hive beetle (Aethina tumida) to honey bee (Apis mellifera) and beehive produced volatiles. Apidologie 34:525–533

    Article  Google Scholar 

  • Tolasch T, Solter S, Toth M, Ruther J, Wittko F (2003) R)-acetoin- female sex pheromone of the summer chafer Amphimallon solstitiale (L. J Chem Ecol 29:1045–1050

    Article  CAS  PubMed  Google Scholar 

  • Torto B, Suazo A, Alborn H, Tumlinson JH, Teal PEA (2005) Response of the small hive beetle (Aethina tumida) to a blend of chemicals identified from honeybee (Apis mellifera) volatiles. Apidologie 36: 523–532

  • Torto B, Arbogast RT, Alborn H, Suazo A, van Engelsdorp D, Boucias D, Tumlinson JH, Teal PEA (2007a) Composition of volatiles from fermenting pollen dough and attractiveness to the small hive beetle Aethina tumida, a parasite of the honey bee Apis mellifera. Apidologie 38:380–389

    Article  CAS  Google Scholar 

  • Torto B, Arbogast RT, van Engelsdorp D, Willms S, Purcell D, Boucias D, Tumlinson JH, Teal PEA (2007b) Trapping of Aethina tumida (Coleoptera: Nitidulidae) from Apis mellifera (hymenoptera: Apidae) colonies with an in-hive baited trap. Environ Entomol 36:1018–1024

    Article  PubMed  Google Scholar 

  • Torto B, Boucias DG, Arbogast RT, Tumlinson JH, Teal PEA (2007c) Multitrophic interaction facilitates parasite-host relationship between an invasive beetle and the honey bee. Proc Natl Acad Sci U S A 104:8374–8378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torto B, Fombong A, Mutyambai D, Muli E, Arbogast R, Teal P (2010) Aethina tumida (Coleoptera: Nitidulidae) and Oplostomus haroldi (Coleoptera: Scarabaeidae): Occurrence in Kenya, distribution within honey bee colonies and responses to host odours. Ann Ent Soc 103:389–396

    Article  Google Scholar 

  • Vuts J, Imrei Z, Birkett MA, Pickett JA, Woodcock CM, Tóth M (2014) Semiochemistry of the Scarabaeoidea. J Chem Ecol 40:190–210

    Article  CAS  PubMed  Google Scholar 

  • Wakefield M.E. (1998) The effect of insect age on the response of three species of Sitophilus to 4S,5R-sitophilure and food volatiles. Proceedings of the 7th International Working Conference on Stored-Products Protection, 2, 1513–1518.

  • Wolde-Hawariat Y, Seyoum E, Jembere B, Negash M, Hansson B, Hillbur Y (2007) Behavioural and electrophysiological response of the sorghum chaffer Pachnoda interrupta (Coleoptera: Scarabaeidae) to plant compounds. Int J Trop Insect Sci 27:53–61

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. D. Salifu for statistical advice; R. Herisolo for the olfactometer drawing; J. Kilonzo, J. Ngang’a, and A Mwajeve for field assistance with bee odors, frame, and beetle collections from the apiary. The authors are grateful to two anonymous reviewers for comments on an earlier version of the manuscript. The German Academic Exchange Service (DAAD) funded ATF while project funding came from the United States Department of Agriculture – Agricultural Research Service (USDA-ARS Project No. SCA-586615-7-119F).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baldwyn Torto.

Additional information

Peter Teal passed away on 11th February 2015

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fombong, A.T., Mutunga, J.M., Teal, P.E.A. et al. Behavioral Evidence for Olfactory-Based Location of Honeybee Colonies by the Scarab Oplostomus haroldi . J Chem Ecol 42, 1063–1069 (2016). https://doi.org/10.1007/s10886-016-0748-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-016-0748-1

Keywords

Navigation